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2 Double Integrals over General Regions

For single integrals, the region over which we integrate is always an interval. But for
double integrals, we want to be able to integrate a function f not just over rectangles but
also over regions D of more general shape, such as the one illustrated in Figure 1. We sup-
pose that D is a bounded region, which means that D can be enclosed in a rectangular
region R as in Figure 2. Then we define a new function F with domain R by

F(x,y) = f(x,y) if (x,y)isinD
’ 0 if (x,y)is in R but not in D
Y y
D
0 x 0 —;
FIGURE 1 ' " FIGURE2

If F is integrable over R, then we define the double integral of - f over D bﬂ/

2] J. flx,y)dA = H F(x,y)dA  where Fis given by Equation 1

D R

Definition 2 makes sense because R is a rectangle and so || F(x, y) dA has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the
values of F(x,y) are 0 when (x, y) lies outside D and so they contribute nothing to
the integral. This means that it doesn’t matter what rectangle R we use as long as it con-
tains D. '

In the case where f(x, y) = 0, we can still interpret ||, f(x, y) dA as the volume of the
solid that lies above D and under the surface z = f(x, y) (the graph of f). You can see that
this is reasonable by comparing the graphs of f and F in Figures 3 and 4 and remember-
ing that [[, F(x, y) dA is the volume under the graph of F.

FIGURE 3 FIGURE 4

Figure 4 also shows that I is likely to have discontinuities at the boundary points
of D. Nonetheless, if / is continuous on D and the boundary curve of D is “well behaved”
(in a sense outside the scope of this book), then it can be shown that |, F(x, y) dA exists
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and therefore [, f(x, y) dA exists. In particular, this is the caqe for
€ folly,
W

types of regions. 1
A plane region D is said to be of type Lif it lies between the eraph ng by

functions of x, that is, Of twyg, Cong;
U()US

D:{(x’.y) ‘ an§b, QI(X) Syng(x)} i

where g, and g, are continuous on [a, b]. Some examples of type I regi
s = ' 10ng
Figure 5. h Show

|
v \ J
' Y=ga() ) ¥ = ga(x) YA . |
=01,
D J D / D
; | l | -~
I | | = [
| v=a) I y=gx0) | [ Tal
[ | | [
0 a h A 0 a b X 0 M
b
FIGURE 5

In order to evaluate [, f(x,y) dA when D is a region of type I, we choose 4
angle R = [a, b] X [c, d] that contains D, as in Figure 6, and we let F be the qucr;m'
given by Equation 1; that is, F agrees with f on D and F is 0 outside D. Then by Fubimp'l?

Some type 1 regions

‘ Y=9:x) Theorem,
‘ ] \ \ ] ' b [d
| ﬂf(,\, y) dA = ” F(x,y) dA = f f F(x, y) dy dx
5 ! D R “e
J. } \ ‘ Observe that F(x, y) = 0 if y < g,(x) or y > g,(x) because (x, y) then lies outside D
— — ‘ Therefore
| Y=g
l | = = 5 d g,(x) 5(x)
( o 1 b o f Flx, y) dy = f F(x,y) dy = f P f e y) dy
Je g,(x) g,(x)
FIGURE 6 .
because F(x, y) = f(x, y) when gi(x) < y < ga(x). Thus we have the following o
‘ that enables us to evaluate the double integral as an iterated integral.
d————— ﬁ
=l B x=ly) |‘ If /'is continuous on a type I region D such that
|
_______ D={wy) |a<x<b gl =<y=< gl
B > N YAVIE
‘ T then HJUJMM=JJ”)ﬂLWJWH
‘ -1)0 a Jyg,(x) i i —
il The i ) ) . ..‘[heullt.‘,\'
he uncg,n al on the right side of (3) is an iterated integral that is simila ll‘ oS peit
fiv) D ey considered in the preceding section, except that in the inner integral we regzun‘-
. > LODslan not ““'}' £, y) but also in the limits of integration, gi(v) and ¢
‘.,‘ \ We alvo consider plane regions of type 11, which can be exprcsscd ias
4 .
I J D {(u\‘ )‘) | ¢ =y o= (/_ /II(V) =\ = /IJ(.V)}
FIGURE 7 '

rheere . P . . . ynoure 1
Somne type Hegions where Acand A, e continugusy, I'wo such regions are illustrated in FIBUT
& R A
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Using the same methods that were used in establishing (3), we can show that

H [freeyyan= [ s, ) dxdy

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate [[, (x + 2y) dA, where D is the region bounded by the
parabolas y = 2x*andy = | + x2.

y | SOLUTION The parabolas intersect when 2x* = 1 + x2, thatis, x> = 1,sox = *1. We

N/ note that the region D, sketched in Figure 8, is a type I region but not a type II region
y=1+a% 4 ) and we can write

1. \ y
‘ | D={(xy | -1<x<1, 2*<y<1+x%}

D y=222 Since the lower boundary is y = 2x? and the upper boundary is y = 1 + x?, Equa-
tion 3 gives

1+x2

M L j j (x + 2y) dA = j'l L (x + 2y) dy dx

FIGURE 8

| y=1+x2
— j_l [xy + yz]y:hz dx
= j_ll [x(1 + x2) + (1 + x2)* — x(2x?) — (2x%)*] dx

= jll (=3x* = x*+2x* +x+ 1)dx

X x* x> X l 32 )
s 4 3 T2 TS

NOTE When we set up a double integral as in Example 1, it is essential to draw a

4 diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of
7 (2,4) integration for the inner integral can be read from the diagram as follows: The arrow

starts at the lower boundary y = g¢i(x), which gives the lower limit in the integral, and

y=2x the arrow ends at the upper boundary y = g,(x), which gives the upper limit of integra-
tion. For a type II region the arrow is drawn horizontally from the left boundary to the

right boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z = x* + y? and
above the region D in the xy-plane bounded by the line y = 2x and the parabola y = x2.

SOLUTION 1 From Figure 9 we see that D is a type I region and

D={(x,y) | 0sx=<2, xzsyszx}
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Figure 10 showee the solid whse
volume s colenlmed i | wmple 2
W lies abhove the 1y plime. helow the

Therefore the volume under z = x

>+ y”and above D ig

" A t2 ("2x
,2 = 2
V = (x” + y’)dA = ’ j (x? + y2
parahinlog - ol i hetween ,U e Y )dy s
the plane 2o mnd the pirnhinlic >
cviinder \ *2 v o
‘ \7\ e dx
: JO L ’3 y—v?
o[ (2x)° 2)3
- ‘ ’(2x) + — e = dx
Jo : 3 B

-2 xf L 14x?
S L P
Jo 3 3
FIGURE 10 XX KJZ_ 216
21 5 6 |, 35
v . SOLUTION 2 From Figure 11 we see that D can also be written as a type Hregmn‘

D={(.\'._\') | OSyS4,%nys\/;}

Therefore another expression for V is

\ \ \
) T IR
V= ([ o+ v2)da = 7+ v dxay
Ja 3V
D -
) - -’:\‘;
( \ r4 ] 3 R 4 y3/2 . y3 3
= - T yx dy = + 3y - ==y
.‘0 [ 3 - ]FL,. Y ( 3 Y 24 2 )%
FIGURE 11 7
1) as aype 1 resion 5 . 13 4
— 2,52, 2 9 _ 216
R e N :
EXAMPLE 3 Evaluate ([, xy dA, where D is the region bounded by the line y =x !
and the parabola y° = 2x + 6.
SOLUTION The region D is shown in Figure 12. Again D is both type [ and type I, W\
the description of D as a type L region is more complicated because the lower bound?
consists of two parts. Therefore we prefer to express D as a type LI region:
D={y) | 2<y< 4,4y —3<sysy+ )
L vV
2 T Rl
(5,4
\ N LA O A XS —[,-_yl -3
= —ytl
N \ | » v ,
" y B _ \
3 0! > ol
\ N 2Nt 6 1-2) (1,2 E
FIGURE 12

() 0 AR}

M l.%yion

Wpe Liegion

(b) [ as a type




FIGURE 13

| 4-1—2)‘:2
(ory=]

/

¥

D

y=ux/2

FIGURE 14

(1))
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Then (5) gives

‘ ‘ Yy (A
L

vyl
AR ¥ v’
vy dy - ¥ {/,\'
0 [ 5]

- ;F}_\{(_\' 1)’ (l,\ :

1 v v N
L R S R
24 3

If we had expressed D as a type 1 region using Figure 12(a), then we would have
obtained

” xydA = J:: ‘Tl Xy (l\ dx + J‘Sl J',V,ﬁ xy dy dx

o J-=v2x+6
D
but this would have involved more work than the other method. a

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes
x+2y+z=2,x=2y,x=0,andz = 0.

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region D over which it lies. Figure 13 shows
the tetrahedron T bounded by the coordinate planes x = 0, z = 0, the vertical plane
x = 2y, and the plane x + 2y + z = 2. Since the plane x + 2y + z = 2 intersects the
xy-plane (whose equation is z = 0) in the line x + 2y = 2, we see that T lies above
the triangular region D in the xy-plane bounded by the lines x = 2y, x + 2y = 2, and
x = 0. (See Figure 14.)

The plane x + 2y + z = 2 can be written as z = 2 — x — 2y, so the required
volume lies under the graph of the function z = 2 — x — 2y and above

D={(x,y) |0sx<lx2=s<y=<l|I —x/2}

Therefore
v={[@-x-2)an

D

"I "l £/2
JO /2

A/

(2 —x—2y)dydx

o St w2
- ‘(, [23' AY Y ]_\ A2 ([.X

) X oy
2 = X A(l 2) (l l) X 2* |' T] dx

x X
25 4 1) dx ; A7 ,\“
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. crorr .
EXAMPLE 5 Evaluate the iterated integral [o s sin(y?) dy dx.

<OLUTION If we try to evaluate the integral as it stands, we are faceq
: . Wi

of first evaluating [ sin(y?) dy- But ]t,s,lmPO;Slbgle to do so in finite ter lth_thet
[ sin(v?)dyis notan clementary fu.nc.“on' (See the end of Sectjon 7.5 o Singg
. 4 : of integration. This 1s accomplished by first exproga 50 we

Jouble integral. Using (3) backward, we haye "IN the irrlus

[ J st = [ sy

. | change the order
=2\ ;
' ated integral as a

0!
\

where D={(x,y) |O<x$1,x<y$1}
FIGURE 15

D as a type I region hen from Figure 16 we See that g, alt
Cnagy,
S

We sketch this region D in Figure 15. T
description of D is
Dz{(x,y) |0o=y=1, nggy}

This enables us to use (5) to express the double integral as an iterateq integra ;
in the

" reverse order:
=0 D
X=y ‘;)1 {‘l sin(yz)d)’ dx = Jf sin(yz) dA
« JX D
7\'7‘—7 T 1 y 1 x=y
= J, [} sin?axay = [[LesinGn]
FIGURE 16 L. !
= fo ysin(y*)dy = —% cos(yz)]0 =11 - cos 1) I

D as a type Il region

B Properties of Double Integrals
We assume that all of the following integrals exist. For rectangular regions D the firt
three properties can be proved in the same manner as in Section 4.2. And then for generl

regions the properties follow from Definition 2.

(€] [ Lreey) + gleylaa = [[ £0xy) da + [f g0x ) aA

D D D

ﬂ cf(x,y)dA = ¢ Hf(X, y) dA where ¢ is a constant
D )

If f(x,y) = g(x, y) for all (x, y) in D, then

ﬂ f(x,y) dA = f f g(x,y) dA

D e
le integ™*

The next property of double integrals is similar to the property of sing

V4
| D given by the equation ':/(X) dx = J‘j(X) dr + J'bf(«\’) dx. boundﬂric
| “ D = I)| U I)Z thrc I) and 13 l ' N " on [hell
| > 5 "la > t e[hﬂps
| D, D, (see Rigure 17), then I > don’t overlap except p
0 i (9] o o .
, I reyyan = (] roxyyan + [[ ron ) da

D
D) D>

FIGURE 17
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t Prlol)erly 9 can be used to evaluate double integrals over regions D that are neither
.]);pc -nor lype ITbut can be expressed as a union of regions of type I or type Il Figure I8
tHustrates this procedure. (See Exercises 57 and 58.)

¥
y
| v
S Dl/
y
D D
|
0 X 0 Tc
FIGURE 18 (a) D is neither type I nor type II. (b) D=D, U D,, D, is type L, D, is type IL.

The ne>‘<t property of integrals says that if we integrate the constant function f(x, y) = 1
over a region D, we get the area of D:

- [[raa=am)

D

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is D and
whose height is 1 has volume A(D) - 1 = A(D), but we know that we can also write its
volume as ([, 1 dA. ‘

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See
Exercise 63.)

@ If m < f(x,y) < M forall (x, y) in D, then

mA(D) < j j £(x,y) dA < MA(D)

FIGURE 19
Cylinder with base D and height 1

EXAMPLE 6 Use Property 11 to estimate the integral [|,, e™*“** dA, where D is the
disk with center the origin and radius 2.

SOLUTION Since —1 < sinx < l and —1 < cosy < |, we have
—1 < sin x cos y < | and therefore

e | < esin,ycusy < L’l =e
Thus, using m = ¢ ' = 1/e, M = ¢, and A(D) = m(2)* in Property |1, we obtain

4qr

14

- JJ. (/Ni“ H'u.\‘_vdA < 47"(' .
D
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15.2 EXERCISES
1=6 Evaluate the iterated integral,

1. \ ‘ (8

., 20 dv da 2. ,“ ‘“‘ v dy dy

3. | "' ve'l da l/_\‘

U

4, “n"? L xsiny dydx
JooJo

6. |-) ":" \m dw dv
Jo .

‘ ‘ cos(s ) dr dy o

7-10 Evaluate the double integral.

7gﬂ

\

] dA. D={(.\‘.\\') |0sx=<40=ys \/T}

. ‘\'A—"
8.”CA+ﬂdA D=ﬁxﬂ|l$FSZT‘lsx$”
9. H( " dA. D ={(xy) | Os_\~s3.0sty}

"

10. H YAXT =y dA. D={(xy) | 0sx<20<y<u}

D

11. Draw an example of a region that is
(a) type I but not type II
(b) type II but not type 1

12. Draw an example of a region that is
(a) both type I and type II
(b) neither type I nor type 11

13-14 Express D as a region of type I and also as a region of
type II. Then evaluate the double integral in two ways.

13. ” xdA, D isenclosed by thelines y = x,y = 0, x = |

D

14. ” xydA, D isenclosed by the curves y = x2, y = 3x
)

15-16 Set up iterated integrals for both orders of integration.
Then evaluate the double integral using the easier order and
explain why it’s easier.

15. H ydA, Disbounded by y =x — 2, x = y?
D

16. ” yie' dA, Disboundedbyy=x,y=4,x=0(
D

17-22 Bvaluate the double integra]

17 ﬂ xcosydA, Dis boundeq by v <
D Y s

* 2 . k] x\
18. Jj (x> +2y)dA, Dis boundegq byy _ N

D
X
19. [[ 7 dA, )
D
D is the triangular region witp, Verticeg ©
) 1

’ (1,2)) (4 |

20. ﬂ xy dA, D isenclosed by the Quarte.... )
D “Clrelg

y=+1-x%x=0, and the axes

21. jf (2x — y) dA,

D .
D is bounded by the circle with center the
Origin an,
. . d a9
22. j 'f ydA, Dis the triangular regjop With v fadyg,
er
D

ticeg 0, 0)
(1, 1), and (4, 0) '

23-32 Find the volume of the given soliq.

23. Under the plane 3x + 2y — 7 = and g

boy .
enclosed by the parabolas y = x2 apq ¥ f’ the Tegion

24. Under the surface z = 1 + x2y? and aboye

the reg;
enclosed by x = y*and x = 4 Tegion

25. Under the surface z = xy and above the trian

gle with
vertices (1, 1), (4, 1), and (1, 2) 1

26. Enclosed by the paraboloid z = x* + y? + | ang e plaues
x=0,y=0,z=0,andx +y=2

27. The tetrahedron enclosed By the coordinate planes and the
plane2x +y +z =4 '

28. Bounded by the planes z = x,y = x,x + y =2, andz=0

29. Enclosed by the cylinders z = x2, y = x? and the planes
2=0,y=4

30. Bounded by the cylinder y* + z* = 4 and the planes x =2
x =10,z = 01in the first octant

31. Bounded by the cylinder x> + y? = 1 and the planesy =~
x =0,z = 0 in the first octant

14 2=1
32. Bounded by the cylinders x> + y> = r>andy” T Z

i the
/33, Usea graphing calculator or computer.to estutﬁgtsurves
x-coordinates of the points of intersection of ded by e
= x*and y = 3x — x2 If D is the region bour

curves, estimate ||, x dA.




., Findthe approximate volume of the solid i ¢,
r”,3 ) that i bounded by the planes y = x, ; = 0, an
ihe cylinder y = €08 x. (Use a graphing deyic

he points of intersection.)

e first octant
dz=yxand
€ t0 estimate

35-38 Find the volume of the solid by subtracting two volumes

35, The solid enclosed by the parabolic cylinders

y=x" 1 and the planes x + y + ; =
'2x+2y—z+ 10=0

)):1_x2~

36 The solid enclosed by the parabolic cylinder y = y? angd the
planesz = 3.2 =2+y

37. The solid under the plane z = 3, above the plane z = y, and
petween the parabolic cylinders y = x2and y = | — ;2

35, The solid in the first octant under the planez = x + y, above
the surface z = xy, and enclosed by the surfaces x = 0,
y=0.andx’ +y' =4

39-40 Sketch the solid whose volume is given by the iterated
integral.

3. (0] [T —x—y)dydx

1
Jo

40. fo’ L‘“"Z(l ~ x) dydx

[ 41-44 Use a computer algebra system to find the exact volume
of the solid.

41, Under the surface z = x’y* + xy” and above the region
bounded by the curves y = x> — xand y = x2 + x
forx=0

42, Between the paraboloids z = 2x* + y? and
z=8 — x> — 2y*and inside the cylinder x> + y*> = 1

43. Enclosedbyz =1 — x> — y*andz = 0

44, Enclosed by z = x* + y*and z = 2y

45-50 Sketch the region of integration and change the order of
integration.

6. [ e aray 6. [ [ ey dyds

47, j{ﬂ/z j‘twf(x, y) dy dx

) ]

2 rVan?
48, j—z L f(x,y) dxdy

49, le Iln Xf(x, y) dy dx

0

50. LI LZ./:M f(x,y) dydx

51-56 Evaluate the integral by reversing the order of integration.

L L‘ .[; e""dx dy 52. J.”I J;II Jy sin y dy dx

a
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1 fl
3. ) [V T Tayar
2 1
34, J.n J.m yeos(x' - 1) dr dy
I (=/2 — _
55. I() -[wcx‘in y 05 3 ] + C052X dx dy

8

56. ‘L J; e dx dy

57-58 Express D as a union of regions of type I or type IT and

evaluate the integral.
57. g x2dA 58. || yaa

D
]
d L x=y=y’
I 1,1 = 2
D/ (11 y=(x+1
: ,
V ‘ —1..
-1 0 11 x 10 X
-1

59-60 Use Property 11 to estimate the value of the integral.

59. ﬂmm, S={xy) ¥ +y2<1,x>0}
N

60. ﬂ sin*(x + y) dA, Tis the triangle enclosed by the lines
T

y=0,y=2x,andx =1

61-62 Find the averge value of f over the region D.

61. f(x,y) = xy, Dis the triangle with vertices (0, 0), (1, 0),
and (1, 3) .

62. f(x,y) =xsiny, D isenclosed by the curves y = 0,
y=x%andx =1

63. Prove Property 11.

64. In evaluating a double integral over a region D, a sum of
iterated integrals was obtained as follows:
o (Y ) »-1'3-)‘.A e
JJ flx,y) dA = JU JU S, y) dxdy + JI JU Fx, y) dx dy
D

Sketch the region D and express the double integral as an
iterated integral with reversed order of integration.
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N

waluate the
vinmetry. o both, to evalu
(‘S“'(vu ||:,\ DOOINETY OF SV

donble inteprl

DAy | x|+ [y = 1}

65. (| (v 4 4 69. H (ax' + by' + a2 = xz)r,[/\,
i | D
o) "‘\ v () < y = 0 v D ‘f[_(l-(’] x[_b’ b]
— ’7\ —
66, “ N \ Vool A

in s ndius R
Py the dhslowath center the oriein and radit

@\ 70. Graph the solid bounded by the Planc ,
the paraboloid z = 4 — X2 =y and fing
(Use your CAS to do the graphin

,"7 Z§]'
”Seka- anj
67, ‘\ (21 < ) A

g, 1o fing the . VP‘””@
the boundary curves of the region of imeora“( Guati,
. ratiop
evaluate the double Integral.) anq
- = a.0=yv=5h
s the rectanvle (0 = a.

15.5 Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral JJ % f (x, y) dA., Where R i one s
;.ng,n; shown in Figure 1. In either case the. descnp’flon of .R In termg of Tecta
(‘<;()1'dil1'1le§ is rather complicated, but R is easily described using pol

ar Coordingre;
¥ YA
Ctyl=1 Ty
R R
> LTS
0 X t
g } ,
0 \_3 +y2= 1 !
— () <2 0<f<7
FIGURE 1 WR={r.0)[0<r<1,0< <27 ®GYR={(r,6)|1=<r=<2,0 |
' ' f int are related to the rect
Recall from Figure 2 that the polar coordinates (r, 8) of a point ¢
Pir. 8] =P angular coordinates (x, y) by the equations
o) =Py
| | f rt=x% 4y X = rcos 6 y = rsinb
( o o
1= : ’\
Y (See Section 10.3.)
FIGURE 2

The regions in Figure | gre special cases of g polar rectangle

R {(", 0) | = ,< b, =0 = B} |

ool ) dAs whel,t
which is show o compute the double integral Hijlé(r‘_’:)l] Ofcql;]l
interval | ¢, b] into m Sllbiﬂtervﬂbb'ntél‘Vﬂls [afégmc
Width 7 = (b — )/, and we divide the interval L, B] into n SUOTEZ, gy
ol equal widith Ag (3

= Uj
i ! ‘ rays 0
: @/n. Then (he circles r = r; and tl.le y4
Polar rectangle & i, the smg polar rectangles Ri; shown in Figure

nin Figure 3, 1, order
Kas i polar rectangle, we divide (e
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