
15.2 Double Integrals over General Regions 

YA 

For single integrals, the region over which we integrate is always an interval. But ror 

double integrals, we want to be able to integrate a function f not just over rectangles but 
aiso overegions LD of more general shape, such as the one illustrated in Figure 1. We sup 
Pose that D is a bounded region, which means that D can be enclosed in a rectangular 

region R as in Figure 2. Then we define a new function F with domain kby 

0 

FIGURE1 

2) 

D 
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FIGURE3 

0 

if (x, y) is in D 

If F is integrable over R, then we define the double integral off over D by 

D 

if (x, y) is in R but not in D 

FIGURE 2 

graph of f 

R 

Definition 2 makes sense because R is a rectangle and so F(x, y) dA has been previ 
ously defined in Section 15.1.The procedure that we have used is reasonable because the 
values of F(, y) are 0 when (x, y) lies outside D and so they contribute nothing to 
the integral. This means that it doesn't matter what rectangle R we use as long as it con 
tains D. 

D 

In the case where f(x, y) >0, we can still interpret p fr, y) dA as the volume of the 
solid that lies above D and under the surface z =f(, y) (the graph of f). You can see that 
this is reasonable by comparing the graphs of f and F in Figures 3 and 4 and remember 
ing that ( F, y) dA is the volume under the graph of F. 

where F is given by Equation 1 

FIGURE4 
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D 

graph of F 

Figure 4 also shows that F is likely to have discontinuities at the boundary points 
of D Nonetheless, if /fis continuous on D and the boundary curve of D is "well behaved" 
(in a sense outside the scope of this book), then it can be shown that , F(x, y) dA exists 
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FIGURE 5 

Some tvpe I regions 

FIGURE 6 

CHAPTER 15 Multiple Integrals 

=h,tV) 

FIGURE7 

=h,y) 

D 

SOne iype |J segions 

=9,() 

D 

=g() 

D 

h 

I=h,(y) 

and therefore , f(x, y) dA exists. In particular, this is 
types of regions. 

functions of x, that is, 
A plane region D is said to be of type I if it lies between the graphs of two coitnuos 

Figure 5. 
where g1 and g> are continuous on a, b]. Some examples of type I regions are shownn 

D= y) | asx<b, gi(x)=y<g} 

y=g;(x) 

then 

D 

y=g() 

(4) 

where h 

the case for the 

0 

In order to evaluate , fx, y) dA when D is a region of type I, we choose a ra 
angle R= [a, b]x [c, d] that contains D, as in Figure 6, and we let F be the function 
given by Equation 1; that is, F agrees with f on D and F is O outside D. Then, by Fubinit: 
Theorem, 

Jg,(x) 

|3 If f is continuous on a type I region D such that 

) dA -| F(, y) dA -| F(*, y) dy ds 

Observe that F(x, y) = 0 if y < g) or y >> gz() because (r, y) then lies outside D. 
Therefore 

Fa, y) dy = ( F(, y) dy - fa y) dy 
Jg,(r) 

because Fa, y) =fa, y) when g1() <y<g(x). Thus we have the following formu 
that enables us to evaluate the double integral as an iterated integral. 

The integral on the right side of (3) is an iterated integral COnsidered in the preceding section, 

D= {, y) | asxsb, gia) <y<g()} 

t and h lC COninuous. Two such egions 

folowing wo 

y=9(x) 

s y) dy dx 

D 

y=g(r) 

)-{a. y) |s y<d. h() << h(}} 

cOnstanl not only in f(x, y) but also in the limits of integration, gilr) and g:(r). 
We also consider plane regions of type II, which can be expressed as 

that is Similar to the onc's e 

except that in the inner integral we i 
regard.r as beig 

re illustrated in Figure 7 
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FIGURE 8 

D 

y=2x 

FIGURE 9 

D 

y=1+x 

D as a type I region 

y=x? 

2 

y= 22 

(2,4) 

(1,2) 

1 

Using the same methods that were used in establishing (3), we can show that 
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D 

where D is a type II region given by Equation 4. 

EXAMPLE 1 Evaluate , (x + 2y) dA, where D is the region bounded by the 
parabolas y = 2x and y =1+x. 

and we can write 

SOLUTION The parabolas intersect when 2x = | + x². that is, x' = 1, s0 x =#1. We 
note that the region D, sketched in Figure 8, is a type I region but not a type II region 

D=, y) | -1<x< 1, 2x' <y<1+x*} 

Since the lower boundary is y = 2x' and the upper boundary is y=1 +x, Equa 
tion 3 gives 

2y) dA - + 2y) dy dx 

-| (1 + ) + (1 + * - x(2r) - (2r*] dx 

- (-3r -x+ 2r + x+ 1) dx 

=-3 
5 4 

+2 
3 

-

SOLUTION 1 From Figure 9 we see that D is a type I region and 
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32 

D=(y) |0<x<2, x'<y<2x} 

15 

NOTE When we set up a double integral as in Example 1, it is essential to draw a 
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary y= g1(x), which gives the lower limit in the integral, and 
the arrow ends at the upper boundary y = ga(x), which gives the upper limit of integra 
tion, For a type II region the arrow is drawn horizontally from the left boundary to the 

right boundary. 

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z = x2 + y² and 
above the region D in the xy-plane bounded by the line y = 2r and the parabola y = 2 



1044 

Fipure 10 shows the solid whose 
volume is calculted in ExHmple 2 
I lies ubove thr 1-plune, helow the 
paraboloid - 1 4 1.nd between 

nd the praholic 
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the plane 21 
vinder t=1 

FIGURE 10 

FIGURE 11 
D as a ype II region 

(2. 4) 

FIGURE 12 

Therefore the volume under 2 = x' + y' and above D is 

V- (r' +y') dA = + y') dy dy 
(2r 

-( 
21 5 

V= 

Therefore another expression for V is 

+ 

(2r) 

3 

6 

() Das a lype l Ivgion 

14r3 

SOLUTION 2 From Figure 11 we see that D can also be written as a tvne Il rart 

-

(5, 4) 

dx 

D =. y) | 0<y<4,y<x< y} 

216 

35 

+y52 

EXAMPLE 3 Evaluate ,xy dA, where D is the region bounded by the line y = ! 
and the parabola y² = 2x + 6. 

sOLUTION The region D is shown in Figure 12. Again Dis both type I and type I, bi 
the descripion of D as a type I region is more complicated because the lower boundin 
consists of two parts. Therefore we prefer to express D as a type l rego 

y 

D=, y) | -2 sys4,y' - 3 <r<yt l} 

24 

=y'-3 

I,-2) 

(b) D as a type ll region 



( 

(0.0. 2) 

FIGURE 13 

FlGURE 14 

x+ 2y + 2=2 

(0.1.0) 

..0) 

xt 2y= 2 
(or y = 1 - x/2) 

y= x/2 

(0.) 

Then (5) gives 
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-,o+y -(6y-]ds 

Therefore 

4 

If we had expressed D as a type I region using Figure 12(a), then we would have 
obtained 

-2r+6 

v-je-

+ 4r'+ 2y' -

iydA 

but this would have involved more work than the other method. 

JON/2 

1ry 

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes 
xt 2y + z= 2, x = 2y, x = 0, and z = 0. 

2y) dA 

/2r+6 
-| J-I 

SOLUTION In a question such as this, it's wise to draw two diagrams: one of the three 
dimensional solid and another of the plane region D over which it lies. Figure 13 shows 
the tetrahedron T bounded by the coordinate planes x = 0, z= 0, the vertical plane 
x=2y, and the plane x + 2y + z= 2. Since the plane x + 2y + z=2 intersects the 
xy-plane (whose equation is z = 0) in the line x t 2y = 2, we see that T lies above 
the triangular region D in the xy-plane bounded by the lines x =2y, x + 2y = 2, and 
x =0.(See Figure 14.) 

The plane x+ 2y + z= 2 can be written as z=2 -x- 2y, so the required 
volume lies under the graph of the function z = 2 - x -2y and above 

-|(2 - *- 2) dy dx 

2x + 1) dx= 

D =, y) | 0<<1, x/2 <y< l - x/2} 

= 36 

3 

dy 

) () 
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-y dy dt + y dy dr 
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FIGURE 15 

D 

D as a tvpe I region 

FIGURE 16 

D 

FIGURE 17 
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D as a type II region 

D 

D 

1'=1 

D, 

EXAMPLE 5 Evaluate the iterated integral Jo J; sin(y²) dydy 

stands, we are faced SOLUTION If wc try to evaluate the integral as it 

of first evaluating sin(y) dy. But it's impossible to do so in fnite terms since 
change the order of integration. This is accomplished by first expressing the given iter 

| sin(y) dy is not an elementary function. (See the end of Section 7.5.) So we must 
ated integral as a double integral. Using (3) backward, we have 

where 

We sketch this region D in Figure 15. Then from 

description of D is 

reverse order: 

6 

Tsin(y') dy dx = || sin(y?) dA 

This enables us to use (5) to express the double integral as an iterated integral in the 

1 

D=, y) | 0<x=1, x<y<1B 

Figure 16 we see 

8 

D=,y) | 0<y<1, 0<x<y 

sin(y°) dy dx = || sin(y") dA 

Properties of Double Integrals 

D 

9 

We assume that all of the following integrals exist. For rectangular regions D the frs 
three properties can be proved in the same manner as in Section 4.2. And then for generl 
regions the properties follow from Definition 2. 

-fsin(y²) dx dy -|x sin(y°))dy 

- y sin(y') dy = -}cos(y?) =1 - cos 1) 

If fr, y)> gu, y) for all (x, y) in D, then 

Lsr, y) + glr, y)] dA - fa. y) da + 
D 

given by the equation r) dx =f) dx + [f(«) dx. 
If D= D, U D, where D, and D, don't overlap 

(see Figure 17), then 

with the task 

D 

that an alternative 

The next property of double integrals is similar to the property of single integras 

D 

|| olr y) dA 

wherecis a Constant 

DT 

except perhaps 
on their boundaries 
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FIGURE 19 

D 

FIGURE 18 

z=1 

Cylinder with base D and height 1 

rToperty 9 can be used to cvaluate douhle integrals over regions D that are neither 
ype Inor iype l but can be expressed as a union of regions of type I or type I. Figure l6 
illustrates this procedure. (See Exercises 57 and 58.) 

0 

10 
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D 

(a) D is neither type I nor type II. 

D 

The next property of integrals says that if we integrate the constant function f(x, y) = 1 
Over a region D, we get the area of D: 

(b) D =D, UD, D, is type I, D, is type II. 

1 dA = A(D) 

11 If m <fx,y) M for all (x, y) in D, then 

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is D and 
whose height is 1 has volume A(D) · |= A(D), but we know that we can also write its 
volume as , 1 dA. 

mA(D) <|| f y) dA < MA(D) 
D 

D 

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See 
Exercise 63.) 

47 

D, 

SOLUTION Since -1 <sin x < l and -1< cos y<1, we have 
-]< sin x cos y<l and therefore 

pls p sin x cOs y<e'=e 

1047 

EXAMPLE6 Use Property 11 to estimate the integral p ein zesy dA, where D is the 
disk with center the origin and radius 2. 

Thus, using m = e= I/e, M = e, and A(D) = T(2) in Property I1, we obtain 

,sin x cOs y dA < 4Te 
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15.2 EXERCISES 

1-6 Evuluate the iterated integal. 

1.|8-2dv ds 

5. || cos(x) dt ds 

7-10 Evaluate the double integral. 

7. 
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10. 

13. 

8. || (2r+ y) dA. D = {r. y) | 1<y<2,y- 1<*1} 

14. 

11. Draw an example of a region that is 

15. 

16. 

! dA. D= {.y) | 0sr<4,0<y< x 

(a) tvpe I but not type I 

12. Draw an example of a region that is 

4. sin y dy dx 

(b) type II but not type I 

6. 

dA. D ={(. y) | 0<y< 3, 0 <x y} 

D 

(a) both type I and type II 

dA, D = {(a. y) | 0<x<2, 0<y<x} 

(b) neither type I nor type I 

Jo Jo 

13-14 Express D as a region of type I and also as a region of 
type II. Then evaluate the double integral in two ways. 

*yda. 

+edu du 

D is enclosed by the lines y =x,y= 0, x = 1 

15-16 Set up ilerated integrals for both orders of integration. 
Then evaluate the double integral using the easier order and 
explain why it's easier. 

D is enclosed by the curves y = x,y= 3x 

D is bounded by y=x- 2, x = y 

D is bounded byy=x, y = 4, x = 0 

17-22 Evaluate the double integral. 
17. 

18. 

19. 

D 

D 

D 

D 

a0 ry dA, D is enclosea by the quarter-cirol 

x cos y dA, D is bounded 

D 
21. || (2x - ) dA, 

28. 

2 + 2y) dA, D is bounded by y = X, y = 

x,x> 

D 

29. 

D is the triangular region with vertices (0, 

),(1,2),(4,1) 

by y =0, y = 

J1-x2, x>0, and the axes 

2 | vdA, D is the triangular region with vertices (o a 

D is bounded by the circle with center the origin and radius 
(1, 1), and (4, 0) 

23-32 Find the volume of the given solid 

23. Under the plane 3x + 2y - z =0 and above the region 
24. Under the surface z =1+x'y' and above the region 

enclosed by the parabolas y x and x = y? 

enclosed by x = y' and x = 4 

25. Under the surface z = xy and above the triangle with 
vertices (1, 1), (4, 1), and (1, 2) 

26. Enclosed by the paraboloid z = x + y'+ 1l and the planes 
x=0, y =0,z = 0, and x t y=2 

27. The tetrahedron enclosed by the coordinate planes and the 
plane 2x ty+ z = 4 

Bounded by the planes z =x, y=x, x + y=2, and z =0 

Enclosed by the cylinders z =x,y=x' and the planes 
z =0, y=4 

30. Bounded by the cylinder y? + ? = 4 and the planes x =2; 
X=0, z = 0 in the first octant 

31. Bounded by the cylinder x² + y²= l and the planes y =i 
X=0, z = 0 in the first octant 

32. Bounded by the cylindersx² + y²=' and y? t'=r 

M 33. Use a graphing calculator or computer to estimate the 

X-coordinates of the points of intersection of the curves 

y=x* and y = 3x - x. If D is the region bounded by these 

curves, estimate nx dA. 



A34. 
Find t the approXimate volume of the solid in the first octant thatis bounded by the planes y = x, z =0, and z = x and 
the cylinder y = COS X. (Use a graphing device to estimate 
the points of intersection.) 

35-38 Find the volume of the solid by subtracting two volumes. 
35. The solid d enclosed I by the parabolic cylinders y = |-x 

1 and the planes xty+z= 2, 
2x+ 2y-z+ 10 =0 

The solid enclosed by the parabolic cylinder y = x and the 
planes z = 3y, z = 2+ y 

37. The solid under the plane z = 3, above the plane z = y, and hetween the parabolic cylinders y = x* and y = | - y? 

38. The solid in the first octant under the plane z=x+ V, above 
the surface z y, and enclosed by the surfaces x=0. 
y=0, and x+ y²=4 

20-40 Sketch the solid whose volume is given by the iterated 
integral. 

39. -x-) dy d° 

S 41-44 Use a computer algebra system to find the exact volume 
of the solid. 

40. 

41, Under the surfacez= x'y* + xy and above the region 
bounded by the curves y = x'- x and y=?+x 
for x> 0 

42. Between the paraboloids z = 2x? + y² and 
z=8-x- 2y' and inside the cylinder x' + y² =1 

43. Enclosed by z = 1 - x'- y and z = 0 

44. Enclosed by z =t y and z = 2y 

45. fa. y) dx dy 

Jo Jo 

47. (. y) dy dx 

45-50 Sketch the region of integration and change the order of 
integration. 

49.f y) dy dx 

S1.eaxdy 

48. 

-x) dy dx 

46. fy) dy ds 

50,/4 

52. 

JO Jarctan a 

0 EValuate the integral by reversing the order of integration. 

sy) dy dx 

Jo 
CLVsin y dy dx 

SECTION 15.2 Double Intearals over General Regions 

53. 

54. y cos(*' - 1) dx dy 

55. 

56. 

57. 

Jo Jv/ 

59. 

60. 

Jo Jarsin COS X 1 t cos'x d dv 

Jo J 

57-58 Express D as a union of regions of type I or type II and 
evaluate the integral. 

V+1 dy dt 

D 

-1 

D 

0 

(1,1) 

58. 
D 

59-60 Use Property 11 to estimate the value of the integral. 

y=(r+ 1) 

-1 

Ix=y-y' 

|| V4 -xy? dA, S ={(, y) |x² + y'< 1,x> 0} 

63. Prove Property 11. 

1049 

sin'(x + y) dA, T is the triangle enclosed by the lines 

y=0, y=2x, and x = 1 

61-62 Find the averge value of f over the region D. 

61. f(x, y) = xy, D is the triangle with vertices (0, 0), (1, 0), 
and (1,3) 

62. f(x, y) =x sin y, D is enclosed by the curves y = 0, 
y=x*, and x = 1 

64. In evaluating a double integral over a region D, a sum of 
iterated integrals was obtained as follows: 

Sketch the region D and express the double integral as an 
iterated integral with reversed order of integration. 
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o9 se peoetry o SVDnetry, or bolh, to evaluate the 

double integral 

65. 3dA. 

D-. 0t0 

66. ||R1 

67. || (21 dA. 

FIGURE2 

dA. 

Dis the disk witth center the origin and radiUs R 

Di the rectangle (0 a. ) < y< h 

15.3 Double Integrals in Polar Coordinates 

FIGURE1 

Pu. b) = Pu,) 

R 

68. 

69. 

(See Section 10.3.) 

) 

width Ar (6 

Suppose that we want to evaluate a double integral |fx, y) dA. whera p. 

AS 70. Graph the solid bounded by the plane x + y the paraboloid z = 4-x- y' and find its eKac voslure 
(Use your CAS to do the graphing, to find he equations 
the boundary curves of the region of integration,and to 

regions shown in Figure 1. In either case the description of R in terms of rectangula coordinates is rather complicated, but R is easily described using polar coordinates. 

r'=x'+ 

+x'y'- y'sin x) dA, 

(ax'+ by + ya'-r) dA. 
D=[-a, a] x [-b, b] 

+y²=1 

(a) R=r, 0) |0<r<l,0< <2a} 

evaluate the double integral.) 

+y' 

R 

Recall from Figure 2 that the polar coordinates (r, 0) of a point are related lou angular coordinates (x, y) by the equations 

r+y'=4 

(b) R={(r, 0) | 1<r<2,0<0<a 

The regions in Figure I are special cases of a polar rectange 

rty'=1 

y=rsin 9 

R-, 0) usrsb,a < e<B} 
which is shown in igure 3. In order to compute the double integral R. Slr, y) d4, wher 

Ris a polar rectangle, we divide the interval lu, b| into m 
subintervals r-, 

Jofequad 

«)/m nd we divide the interval a, B] into n subintervals of cqual widh A0 (3- «)/n. Then the circles r r; and the ravs = b; 
divide te 

polar reclangle R into the small polar rectangles Rij shown in Figure 4. 
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