Math 244 Exam 2, Fall 2023

Name:

Question	Points	Score
1	9	
2	18	
3	10	
4	9	
5	0	
Total:	46	

- You have 50 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work unless the problem states otherwise. You will get almost no credit for solutions that are not fully justified.
- You may use a 3x5 notecard with notes, no other resources are authorized.
- You may use a scientific calculator, no other electronic devices are authorized.
- The back side of each page can be used as scratch paper.

Homework	
Exam 1	
Exam 2	
Total	

- 1. (9 points) Let R be a region in the xy-plane and suppose f(x, y) is a function. Let T(u, v) = (x(u, v), y(u, v)) be a transformation with the following properties:
 - (i) The Jacobian of T is -3/17.
 - (ii) T maps the rectangle $1 \le u \le 2$ and $0 \le v \le 3$ to the region R in the xy-plane.
 - (iii) $f(T(u,v)) = ue^{uv}$.

Evaluate the integral $\iint_R f(x, y) dA$.

- 2. (18 points) Let E be the solid the lies inside the cylinder $x^2 + y^2 = 1$, below the paraboloid $z = x^2 + y^2$, and above the xy-plane.
 - (a) Set up the volume triple integral in rectangular coordinates.
 - (b) Set up the volume triple integral in cylindrical coordinates.
 - (c) Find the volume of E.

- 3. (10 points) Let E be the spherical wedge in the first octant cut from unit ball by the planes y = 0 and y = x.
 - (a) Sketch the region.
 - (b) Convert the following integral to spherical coordinates

$$\iiint_E \exp(-x^2 - y^2 - z^2) \ dV.$$

Do not evaluate the integral.

4. (9 points) Consider the integral $\mathbf{1}$

$$\int_0^2 \int_0^1 \int_0^{y^2} f(x, y, z) \, dz dy dx.$$

- (a) Sketch the region of integration.
- (b) Change the order of integration to dydxdz.

5. (5 points (bonus)) Give an example of a region R, a function f(x, y), and a transformation T(u, v) satisfying the hypothesis of problem 1.