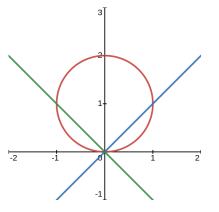
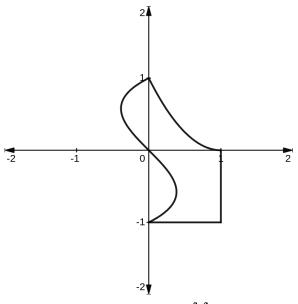
Math 244 Exam 1, Spring 2023


Name:

Question	Points	Score
1	13	
2	5	
3	13	
4	11	
5	0	
Total:	42	


- You have 50 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work unless the problem states otherwise. You will get almost no credit for solutions that are not fully justified.
- You may use a 3x5 notecard with notes.
- No electronic devices are authorized with the exception of a scientific calculator.
- You do not need to simplify your answers.
- The back side of each page can be used as scratch paper.
- Good luck!

Homework	
Exam 1	
Total	

1. (13 points) Set up the three double integrals necessary to find the centroid of the thin lamina bounded by the lines $y = \pm x$ and the circle $x^2 + (y-1)^2 = 1$. Set up the integrals in polar coordinates, you do not need to solve them.

2. (5 points) Let D be the region enclosed by the curves x = 1, y = -1, $x = y^3 - y$ and $y = (x - 1)^2$. See the picture below.

Write the double integral $\iint_D f(x, y) \, dA$ as a sum of type I and/or type II integrals.

3. (13 points) Find the polar moment of inertia I_0 of the homogeneous square lamina bounded by the lines $y = \pm a$ and $x = \pm a$.

4. (11 points) Use a double integral to find the surface area of the portion of the cone $z = \sqrt{x^2 + y^2}$ over the disk $x^2 + y^2 \le 4$.

5. (5 points (bonus)) Give an example of a lamina whose center of mass does not lie within the lamina.