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Chapter 1 Linear Equations and Matrices
—a- (kb)) =k(a-
i m)smwmmwm-b a- (kb) '( b).
(n) How many grams of protein are consumed daily by e  atrix hose entries are rea -
the malesin the project? 53, let Abcan _ O (the m X m matrix all of erg
Show that if AAT = o o WhQSe
(h) How many grams of fat are consumed daily by the e - A= O. |
females in the project” ® 4. Use the matrices A and C in Exercise 11 and the
Let s he an n-vecton o “_R multiplication command in your software to Computé
(n) e it possible for x - x 1o he negative? l,xpl:xin. AC and CA. Discuss the results.T
) n -
(h) Hx-x = 0 whnot e x? ® -5 Using your software, compute B B and BBT for
1ot o hoand ¢ he novectors and let /obe a real number. 5 [1 % % % é %]
(n) Show thatan-h =b-a
Discuss the naturé of the results.

(h) Show that (n + hy-c=a-c+b-c

Algebraic Properties O
1 we consider the algebraic properties of the matrix operations jyg
e similar to the familiar properties that hojg
for rcal numbers. However. there will be striking differences between the se
of real numbers and the set of matrices in their algebraic behavior under certajp
operations—for example. under multiplication (as seen in Section 1.3). The proof;

of most of the properties will be left as exercises.

f Matrix Operations

In this sectior
defined. Many of these properties ar

Theorem 1.1 Properties of Matrix Addition
et A. B, and C be m x n matrices.

(a) A+ B =B+ A.
(b) A+ (B+C)=(A+B)+C.
(¢) There is a unique m x n matrix O such that

A+0=A ()

for any m x n matrix A. The matrix O is called the m x n zero matrix.

(d) For each m x n matrix A, there is a unique m x n matrix D such that
A+ D=0. -
We shall write D as —A, so (2) can be written as
A+ (=A)= 0.

The matrix — A is called the negative of A. We also note that — A is (— D

Proof
(o) Lt
A=la, |, B= (6],
A B — C - [(',,]. and B AZD:[(/,-,-].
We must show that ¢, = o, forall i : |
forall £, 7. Simee and //,/l/;u-\- l«k.l;llll i“'{lllil::w\:/glz aij + by and d;j = bij ‘Iil‘z”'
nplies that « diytoralle, ;. ’ lave a;j + bi_,' = bij +dij» wh

y
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(c) Let U = [u;; ]. Then A + U = A if and only if" a;; 4 u;; = aij, which holds

if and only if u;; = 0. Thus U is the m x n matrix all of whose entries are zero: U
is denoted by O. N

o-[3 1]

The 2 x 2 zero matrix is

If
4 —1
A:[z 3]’
then
4—1_+_0 0_4+0—1+0_4—1
2 3 0 0| [2+40 340 |2 30 n
The 2 x 3 zero matrix is
0 0 0
0_[0 0 O]'
1 3 =2 -1 -3 2
IfA_[_2 4 3],then—A=|i ) 4 _3:|. |

Properties of Matrix Multiplication

(a) If A, B, and C are matrices of the appropriate sizes, then
A(BC) = (AB)C.
(b) If A, B, and C are matrices of the appropriate sizes, then
(A+ B)C = AC + BC.
(¢) If A, B, and C are matrices of the appropriate sizes, then

C(A+B)=CA+CB. (3)

Proof
(a) Suppose that A ism x n, Bisn x p, and C is p x ¢q. We shall prove the
result for the special case m = 2, n = 3, p = 4, and ¢ = 3. The general proof is
completely amalogous.

LetA = [Cl,’j], B = [b,-j],C = [C,'j],AB =D= [(lij], BC =E = [e,-j],
(AB)C =F = [f,-,-], and A(BC) =G = [g,-j]. We must show that f;; = g;; for
all i, j. Now

4 4 3

fij = E dikcxj = E E irby |
k=1 k=1 r=l1

"The connector “il and only if” means that both statements are true or both statements are false.

Thus (i) il A4 U = A, then a;; + ui; = a5 and (i) il a;; 4+ u;; = a;;, then A + U = A. See Appendix
C, “Introduction to Proofs.”
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r=1

and 4
3 e = Zair Zbrkckj .
8ij = Za,,. ri L
r=I

d by the summation notation,

Then, by the properties satisfie

i(anbm +apbu T ai3bak)Chi

fij =
= 4 4
4 i T di bacrs
=ailzl71kckj+afzzb2kck/+ 3; 3Chj
ey k=l
3 4
= Zair (Z byckj | = 8ii-
r=I k=1
The proofs of (b) and (c) are Jeft as Exercise 4.
| Exampie3 g o
A—qu, B=10 2 2 2|,
T2 -3 4 s 0 -1 3
and s
o230
10 0 3
2 1 0
Then
0 3 7
A 516 56
A(BC)—[Q 3 4] g _‘31 g‘[lz 30 gJ
and
1 0 0) '
(AB)C:[lg 16 13]|2 -3 of [43 16 6
6 -8 -8 6f|0 0 3| |12 30 8
2 1 0
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and (verify)
15 17 [3 -1 18 0
AC _ _ _
+BC [7 —4]*[5 7} [12 3] -

Recall Example 9 in Section 1.3, which shows that AB need not always
equal BA. This is the first significant difference between multiplication of
matrices and multiplication of real numbers.

Theorem 1.3  Properties of Scalar Multiplication
If r and s are real numbers and A and B are matrices of the appropriate sizes, then
@ r@sA) = (@s)A
b) r+sA=rA+sA
() r"(A+B)=rA+rB
(d) ArB) =r(AB) = (rA)B
Proof
Exercises 13, 14, 16, and 18. |

3 -2 1

Then

12 6 9] _[24 12 18
2(3A)_2[6 % 12]_ }_614.

We also have

32 —10 16
4 0 =2 “[o 0 26]_2(/13).

A(2B):|:4 2 3]
0 2 4 =

2 -3 4

m Scalar multiplication can be used to change the size of entries in a matrix to meet
prescribed properties. Let

Then for k = % the largest entry of kA is 1. Also if the entries of A represent the
volume of products in gallons, for k = 4, kA gives the volume in quarts. |

So far we have seen that multiplication and addition of matrices have much in
common with multiplication and addition of real numbers. We now look at some
properties of the transpose.
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Theorem 1.4 Properties of Transpose )

If 7 is a scalar and A and B are matrices of the appropriate sizes, thep

(@) (AT =4

() (A+ B)T = AT + BT

(©) (AB)T = BT AT

(d) rA)T =rAT

Proof

We leave the proofs of (a), (b), and (d) as Exercises 26 and 27.

(©) Let A — [a,.j] and B = [b,-j]; let AB=C = [Cij]. We must Prove the .
C(

is the (i, j) entry in BT AT. Now |

n

n
r _ T T
cij =cji = E aji by = E akjbik
k=1

k=1

n
— bek aij = the (i, j) entry in BT AT
=1

1 23 3 -1 2
A_I:_z 0 1] and B_[3 ) _1].
Then
1 -2 3 3
AT=|2 0| ad BT=|_1 »
3 1 2 —1
Also,
4 1
4 1 5
A+B=[1 ) 0] and A+B)T=|1 2
5 0
Now
4 1
A"+ BT = |1 4 =(A+B)T.
50 '
' Let
EXAMPLE 8
L[ 3 2 0 1
2 3 and B =12 2
3 -1
Then

12 5}
A/f:[ . T 12 7
_ and  (AB)T — .
73 (4B) [5 —3J

— — — 4
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On the other hand,

1 2
; 2 3
AT=|3 —1| and Bf:[? 5 _J.
2 3
Then
BTaT = |12 7|2 (AB)T.
5 -3 [
We also note two other peculiarities of matrix multiplication. If @ and b are
real numbers, then ab = 0 can hold only if a or b is zero. However, this is
not true for matrices.
_ouzo [
1 2 4 —6
A_|:2 4:] and B_|:_2 3:|,
. . . 0 0
then neither A nor B is the zero matrix, but AB = 0ol | |
If a, b, and ¢ are real numbers for which ab = ac and a = 0, it follows
that b = c. That is, we can cancel out the nonzero factor a. However, the
cancellation law does not hold for matrices, as the following example shows.
__exampie 10 [
1 2 2 1 -2 17
A_[z 4], B_[3 2], and c_[ : _1],
then
8 5
w-se=[ 2 3]
but B # C. ||

We summarize some of the differences between matrix multiplication and
the multiplication of real numbers as follows: For matrices A, B, and C of
the appropriate sizes,

1. AB need not equal BA.

2. AB may be the zero matrix with A % O and B # O.
3. AB may equal AC with B # C.

In this section we have developed a number of properties about matrices and
their transposes. If a future problem involves these concepts, refer to these prop-
erties 1o help solve the problem. These results can be used to develop many more
results.
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Key Terms

Properties of matrix addition
Zero matrix

Properties of matrix multiplication

T

6

9.

10.

1.4

Exercises

. Prove Theorem 1. 1(h).

Prove Theorem | 1ed).

Verify Theoarem 1.2¢a) for the following matrices:

| 0
and C=13 -1
] 2

Prove Theorem 1.2(b) and (¢).

\erify Theorem 1.2(¢) for the following matrices:

2 2] o1 2
Slsoa 2 T o3 o2)

let A = [a, | bethe n x n matrix defined by a; = k
anda, = 0ifi # j. Show thatif B isanyn xn matrix,
then AB = kB.

Cn

[.et A be anm » n matrix and C = [c'l Cr
2 1 » m matrix. Prove that

m

CA=Y ciA.
j=1
where A s the jthrow of A.
sinf
cost |

(a) Delermine a simple expression for A,

cost

Let A= .
—sinf
(b) Determine a simple expression for A”,

(¢) Conjecture the form of a simple expression for A%,
Ica positve Inleger.

(d) Prove or disprove your conjecture in part (c).

Find a pair of uncqual 2 2 2 matrices A and B, other than
those given i Example 9. such that AB = 0.

Find two different 2~ 2 matrices A such that

01
A = ! 4
0

11.

12.
13.
14.

16.
17.

19.

20.

21.

22,

Properties of scalar multiplication
Properties of transpose

Find two unequal 2 x 2 matrices A and B such that

/\B—]O
=10 1l

Find two different 2 x 2 matrices A such that A= 0.
Prove Theorem 1.3(a).
Prove Theorem 1.3(b).
Verify Theorem 1.3(b) for r = 4,s = —2,and A =
)
4 2
Prove Theorem 1.3(c).
Verify Theorem 1.3(c) for r = -3,

4 2 0 2
A=|1 -3|, and B=| 4 3
3 2 -2 1

Prove Theorem 1.3(d).
Verify Theorem 1.3(d) for the following matrices:

1 3 -1 3 2
<[y 3] e=[0 2 )
and r=-3.

The matrix A contains the weight (in pounds) of objects

packed on board a spacecraft on earth. The objects are

to be used on the moon where things weigh about é as
much. Write an expression kA that calculates the weight
of the objects on the moon.

(a) A is a 360 x 2 matrix. The first column of A is
cos0°, cos 1°, ..., cos 359°; and the second column
is sin0°,sin1°, ..., sin359°. The graph of the or-
dered pairs in A is a circle of radius 1 centered at
the origin. Write an expression kA for ordered pairs
whose graph is a circle of radius 3 centered at the
origin.

(b) Explain how to prove the claims about the circles in
part (a).

Determine a scalar r such that Ax = rx, where

A—2l‘111—l
_IZ‘HX_I'



23.

24.

25.
26.
27.
28.

29.

30.

3L

32,

33.

34.

3s.
36.

Determine a scalar r such that Ax = rx, where

1 2 —1 1

2

A=11 0 1 and x = %
4 -4 5 1

Prove that if AX = rx for n x n matrix A, n x 1 matrix
x, and scalar r, then Ay = ry, where y = sx for any
scalar s.
Determine a scalar s such that A2x = sx when Ax = rx.
Prove Theorem 1.4(a).
Prove Theorem 1.4(b) and (d).
Verify Theorem 1.4(a), (b), and (d) for

—1

13 2 4 2
‘4‘[2 1—3] B‘[—z I 5]’

and r = —4.

Verify Theorem 1.4(c) for
3 -1
Az[; ? _g:' and B=|2 4
1 2
Let
2 3 -1
A=|-1|, B=|-2]|, and C= 5
3 —4 1

(a) Compute (ABT)C.
(b) Compute BT C and multiply the result by A on the
right. (Hint: BTCis 1 x 1).

(¢) Explain why (ABT)C = (BT C)A.

Determine a constant k such that (kA)” (kA) = 1, where
-2

A= 1
-1

be used?

Find three 2 x 2 matrices, A, B, and C such that AB =

AC with B # C and A # O.

Let A be an n x n matrix and ¢ a real number. Show that

ifcA=0,thenc=00r A= 0.

Determine all 2 x 2 matrices A such that AB = BA for

any 2 x 2 matrix B.

Show that (A — B)" = AT — B".

Let x; and x, be solutions to the homogeneous linear sys-

lem Ax = ().

. Is there more than one value of k that could

(a) Show that x, + x, is a solution.

(b) Show that x, — x is a solution.

1.4 Algebraic Properties of Matrix Operations

fom

||

2. 41.

|

37.

38.

- 39.

- 40.

— -
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(c) For any scalar r, show that rx, is a solution.

(d) For any scalars r and s, show that rx; + sX; is a
solution.

Show that if Ax = b has more than one solution, then

it has infinitely many solutions. (Hint: If x; and x, are

solutions, consider X3 = rx, + sXx,, where r +s = 1.)

Show that if x, and x, are solutions to the linear system

Ax = b, then X, — X, is a solution to the associated ho-

mogeneous system Ax = 0.

Let
6 —1 1 10.5
A=10 13 -16 and x=21.0
0 8 —11 10.5

(a) Determine a scalar r such that Ax = rx.
(b) Is it true that A”x = rx for the value r determined

in part (a)?
Repeat Exercise 39 with
—-3.35 -3.00 3.60
A= 1.20 2.05 -6.20
-3.60 —-2.40 3.85
12.5
and x=| —12.5
6.25
. 0.01
Let A = [8.(1)01 0'8001]. In your software, set the

display format to show as many decimal places as possi-
ble, then compute

B=10xA,
C=A4+A4+A+A+A+A+A+A+A+A,
10 summands
and
D=B-C.

If D is not O, then you have verified that scalar mul-
tiplication by a positive integer and successive addition
are not the same in your computing environment. (It is
not unusual that D # O, since many computing envi-
ronments use only a “model” of exact arithmetic, called
floating-point arithmetic.)

11
. Let A = ':1 l] In your software, set the display to

show as many decimal places as possible. Experiment to
find a positive integer k such that A + 10~ % A is equal
to A. I you find such an integer k, you have verified
that there is more than one matrix in your computational
environment that plays the role of 0.
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