Math 311 Final, Fall 2024

Name:

Question	Points	Score
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	0	
Total:	0	

- You have 120 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work, unless otherwise indicated. You will get almost no credit for solutions that are not fully justified.
- No electronic devices are authorized.
- You may use a 5x8 notecard with notes, no other resources are authorized.
- The back side of each page can be used as scratch work or for longer solutions. Please indicate clearly if your solution extends to the back side of a page.

1. Solve linear system. Write you answer in vector form $\vec{x}_h + \vec{x}_p$.

$$x_1 - 3x_2 + x_3 - x_4 - x_5 = 1$$

$$2x_1 + x_2 - x_3 + 2x_4 + x_5 = 2$$

$$-x_1 + 3x_2 - x_3 - 2x_4 - x_5 = 3$$

$$2x_1 + x_2 - x_3 - x_4 - x_5 = 6$$

2. Determinants.

$$A = \begin{bmatrix} -3 & 0 & 4 \\ 2 & 1 & -3 \\ 4 & 0 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 1 & -2 \\ -3 & 2 & 1 \end{bmatrix}$$

Find det(A), det(B), det($-A^T$), det($(B^{-1})^2$)

- 3. Determine if the following are subspaces.
 - (a) $W = \{ f \in F[a, b] : f(a) = 0 \}$ (b) $W = \{ f \in F[a, b] : f(a) = 1 \}$ (c) $W = \{ A \in M_n(\mathbb{R}) : A \text{ is diagonal} \}$
 - (d) $W = \{A \in M_n(\mathbb{R}) : \det(A) = 0\}$
- 4. Answer the following
 - (i) Is S linearly dependent or independent?
 - (ii) Is the vector v in the span of S.
 - (iii) Does S form a basis for V.

(a)
$$V = \mathbb{R}^3$$
, $S = \left\{ \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}, v = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$
(b) $V = \mathbb{R}^3$, $S = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \right\}, v = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$
(c) $V = P_2$, $S = \{x^2 - 3x, x + 7\}, v = 7x^2 - 25x + 28.$
(d) $V = P_2$, $S = \{x^2 + x + 1, x^2 - x + 1, x^2 - 1\}, v = 3x^2$

5. Use the Gram-Schmidt process to transform S into an orthonormal basis.

(a)
$$V = \mathbb{R}^3$$
 with the usual dot product, $S = \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \right\}.$

(b) $V = P_2$ with inner product $\langle p, q \rangle = \int_{-1}^{1} p(t)q(t)dt$, and $S = \{1, t, t^2\}$ (in this order!). The resulting polynomials when we apply this process to $1, t, \ldots, t^n$ are called normalized Legendre polynomials.

- 6. Find the orthogonal complement W^{\perp} of $W = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\3 \end{bmatrix} \right\}$
- 7. Determine if the following maps are linear transformations.

(a)
$$L: M_2(\mathbb{R}) \to M_2(\mathbb{R})$$
 where $L(A) = A^2$
(b) $L: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ where $L(A) = \frac{A + A^T}{2}$
(c) $L: D^2(a, b) \to F(a, b)$ where $L(f(t)) = f''(t) + tf'(t) + t^2f(t)$

8. Let $L: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ be the transpose map $L(A) = A^T$. Let

S =	$\left\{ \begin{bmatrix} 1\\ 0 \end{bmatrix} \right.$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix} \Big\}$
T =	$\left\{ \begin{bmatrix} 1\\ 0 \end{bmatrix} \right.$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix} \Big\}$

- (a) Find $P_{S\leftarrow T}$ and $P_{T\leftarrow S}$.
- (b) Find $[L]_S^S$.
- (c) Use parts (a) and (b) to find $[L]_T^T$.
- (d) Find the eigenvalues of L and bases for its eigenspaces.
- 9. For the following matrices
 - (i) Find the eigenvalues of A.
 - (ii) Compute bases for the eigenspaces of A.
 - (iii) Is the matrix A diagonalizable, if so find a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$.

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 0 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$