Diagonal matrices can be formed with the diag command.

>> v = [1 2 3 4 5] >> diag(v) % a matrix with the elements of v in the diagonal

The command eye(n) returns the $n \times n$ identity matrix. The command zeros(n) returns the $n \times n$ zero matrix

>>	eye(3)	%	the	3x3 i	d	entity					
>>	2*I	%	the	scala	r	matrix	with	2's	along	the	diagonal
>>	zeros(4)	%	the	4x4 z	e	ro matri	ix				

We can transpose a matrix with the ' operator. The transpose operator has the same precedence as powers.

>> A = magic(5)	% returns a 5x5 magic square
>> A'	% returns the transpose of A
>> v = [1 2 3 4 5]	% a row vector
>> v,	% a column vector with the entries of v

Partitioned matrices are formed by using the usual matrix notation with matrices as its entries, The sizes just have to make sense.

```
>> B = [2; 3]
>> C = [1 -1 0]
>> D = [9 8 -4; 6 7 5]
>> [B D]
>> [D; C]
>> [[D; C] C']
```