Math 242 Exam 2, Spring 2023

Name:

Section: 7 8

Question	Points	Score
1	0	
2	0	
3	0	
4	0	
5	0	
Total:	0	

- You have 75 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work unless the problem states otherwise. You will get almost no credit for solutions that are not fully justified.
- You may not use notes or calculators on this exam.
- You do not need to simplify your answers.
- Good luck!

Homework	
Worksheets	
Quizzes	
Exam 1	
Exam 2	
Total	

1. Evaluate the following integrals.

(a)
$$\int \frac{1}{\sqrt{4-x}} dx.$$

(b)
$$\int \frac{1}{\sqrt{4-x^2}} dx$$
.

(c)
$$\int \sqrt{4-x^2} \ dx.$$

(d)
$$\int \frac{x}{\sqrt{4-x^2}} dx.$$

(e)
$$\int \frac{1}{\sqrt{4-x^4}} dx$$
.

(f)
$$\int \frac{1}{x\sqrt{4-x^2}} dx.$$

(g)
$$\int \frac{\sqrt{4-x^2}}{x} dx.$$

(h)
$$\int \frac{x^2}{\sqrt{4-x^2}} dx.$$

(i)
$$\int \frac{1}{x\sqrt{x^2-4}} dx.$$

(j)
$$\int \frac{1}{r^2 \sqrt{r^2 - 4}} dx$$
.

(k)
$$\int \frac{1}{\sqrt{x^2 - 4}} dx.$$

(1)
$$\int \frac{1}{\sqrt{x^2+4}} \, dx$$
.

(m)
$$\int \frac{x^3}{\sqrt{x^2+4}} dx.$$

(n)
$$\int \frac{1}{x^2 + 4} dx$$
.

(o)
$$\int \frac{x}{x^2 + 4} dx.$$

(p)
$$\int \frac{x^2}{x^2+4} dx$$
.

(q)
$$\int \frac{x}{x^2 + 8x + 7} dx$$
.

(r)
$$\int \frac{x+1}{x^2-4} dx$$
.

(s)
$$\int \frac{x}{x^2 - 2x + 4} dx.$$

(t)
$$\int \frac{3}{x^3 + 2x} dx.$$

(u)
$$\int \cos^5(x) dx$$
.

(v)
$$\int \sec^4 x \ dx$$
.

(w)
$$\int \sin^2 x \cos^3 x \ dx.$$

(x)
$$\int \cos^2 x \ dx$$
.

(y)
$$\int \sin^4 x \ dx$$
.

(z)
$$\int \cot^2 x \ dx$$
.

2. (a)
$$\int \cot^3 x \csc^3 x \ dx.$$

(b)
$$\int \tan^3 x \sec^3 x \ dx.$$

(c)
$$\int \tan^4 x \sec^4 x \ dx.$$

(d)
$$\int_{-1}^{1} \frac{1}{x} dx$$
.

(e)
$$\int_0^\infty \frac{2x}{(1+x^2)^3} dx$$
.

(f)
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$
.

(g)
$$\int_0^2 \frac{1}{(x-1)^{2/5}} dx$$
.

(h)
$$\int_{1}^{\infty} \frac{\ln x}{x^3} dx.$$

(i)
$$\int_0^\infty \frac{1}{x^2 + 4} \, dx$$
.

(j)
$$\int_{3}^{\infty} \frac{1}{x^2 - 4} dx$$
.

(k)
$$\int_{1}^{2} \frac{1}{x \ln x} dx.$$

3. Give the abstract partial fration decomposition for

$$\frac{x^3 + x - 17}{x^3(x^2 + 7)^3(2x - 1)}$$

- 4. Approximate $\int_{-2}^{2} x^3 dx$ using S_4 and T_4 .
- 5. For the following integrals find an n that guarantees that Simpson's Rule S_n is within and error of at most 10^{-4} . Some useful absolute value properties are |ab| = |a||b| and $|a+b| \le |a| + |b|$. You do not have to simplify your answer.
 - (a) $\int_0^1 x \cos(2x) \ dx$. You are given that $\frac{d^4}{dx^4} x \cos(2x) = 16(2\sin(2x) + x\cos(2x))$.
 - (b) $\int_{-1}^{1} e^{-x^2} dx$. You are given that $\frac{d^4}{dx^4} e^{-x^2} = 4e^{-x^2} (4x^2 12x^2 + 3)$.
 - (c) $\int_{-1}^{0} \frac{1}{1-x} dx$. You are given that $\frac{d^4}{dx^4} \frac{1}{1-x} = \frac{24}{(1-x)^5}$.