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15.1 Double Integrals over Rectangles
In much the same way that our attempt to solve the area p'roblerr% led to the g "
a definite integral, we now seek to find the volume of a solid and in the Proceg, W:mn ”
a .

at the definition of a double integral. My

® Review of the Definite Integral

First let’s recall the basic facts concerning definite iptggfals of functions of a g,

able. If f(x) is defined for @ < x < b, we start by dividing the interval [ Blin gle Vg

intervals [x;-, x;] of equal width Ax = (b — a)/n and we choose sample Poing Ry,
Sx* .

these subintervals. Then we form the Riemann sum “i
[ S /57) da

and take the limit of such sums as n —  to obtain the definite integral of  from -
@ [/ £ dx = fim 3 76:1) Ax |

In the special case where f(x) = 0, the Riemann sum can be interpreteq as the
the areas of the approximating rectangles in Figure 1, and Ja” F(x) dx represens thum 0
€ drey

under the curve y = £(x) from a to b.

FIGURE 1

8@ Volumes and Double Integrals
In a similar manner we consider a function f of two variables defined on a closed rectangle

R=[a,b]><[c,d]={(x,y)ER2| asx<bc<ys<d

and we first suppose that f{(x, ¥) = 0. The graph of [ s a surface with equation z = f(x,)).
Let § be the solid that lies above R and under the graph of f, that is,

S = {(.r,_\'. DER | 0= <f(xy), (xy) € R}

(See Figure 2.) Our goal is to find the volume of S. .+ sy
The first step is to divide the rectangle R into subrectangles. We accomplish tis

. — (h—a)m
dividing the interval [a, ] into m subintervals [x;-1, x;] of equgl width Ax = —(b )/n“)é y
and dividing [c, d] into n subintervals [y, y;] of equal w1fith Ay=(d b; terlv 5
drawing lines parallel to the coordinate axes through the endpoints of these su

N
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as in Fi
Figure 3, we form the subrectangles

. [x,_\,x,-] X [y,»n,y_;] = {(x, y) \ Xio) = X =< Xi, Yj-! =y= y,'}
each with area AA — Ax Ay

FIGURE 3 0
Dividing R into subrectangles

If we choose a sample point (x, y;¥) in each Ry, then we can approximate the part of
§ that lies above each R;; by a thin rectangular box (or “column™) with base R;; and height

f ({C"jf’ yif) as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the
height of the box times the area of the base rectangle:

Fxi, yi) AA

If we follow this procedure for all the rectangles and add the volumes of the correspond-
ing boxes, we get an approximation to the total volume of S:

B V=33 fx v AA

i=1 j=1

(See Figure 5.) This double sum means that for each subrectangle we evaluate f at the
chosen point and multiply by the area of the subrectangle, and then we add the results.

FIGURE 5



The meaning of the double limit in
Equation 4 is that we can make the
double sum as close as we like EU lhdv) »
number V [for any choice of (x;f.yy)m

i ficiently large
R, ] by taking m and n sufficienti

Notice the similarity between
Definition 5 and the defimtion of a

5 »y M 35
single integral in Equation —.

Jthough we have defined the double
ltegrafb)' dividing R into equal-sized
rbr;ctangles. we could have used
brectangles R;; of unequal size. But
:n we would have to ensure that all
their dimensions approach O in the
iting process.

I1s us that the approximation given in (5) beCOles DEUCT as -y, ang
on telis ¢ N

o would expect that

Our intuitl
N
hecome larget and SO W
m n
[ PN (e ok
1 % lim > 2> f(x), v)) AA
| m.n S II |

We nse the expression in Equation 4 to define the volume of the .snli(l S that lie il
the oraph of f and above the rectangle R. (It can be shown that this definition is u)n\;"r
[k‘]]li\\'illl our formula for volume in Section 5.2.) §-
Limits of the type that appear in Equation 4 occur frequently, not just in “"dinp v
umes but in a variety of other situations as well—as we will see in Section 15.4,,;(“”"
when /7 is not a positive function. So we make the following definition. “ven

[5] Definition The double integral of [ over the rectangle R is
m n

”‘f(y\,‘, v)dA = lim > > [k v5) AA
% Mon T

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number & - 0 there

is an integer N such that

ug n

’Hf(x,y) dA — 3 T f(xfy)AA <&

i=1 j=1

for all integers m and n greater than N and for any choice of sample points (x, v¥)inR,.
A function f is called integrable if the limit in Definition 5 exists. It is shown in
courses on advanced calculus that all continuous functions are integrable. In fact, the
double integral of f exists provided that f is “not too discontinuous.” In particular, if
is bounded on R, [that is, there is a constant M such that | flx,v) | < M forall (x, v)inR),
and f is continuous there, except on a finite number of smooth curves, then f is integrable
over R.
The sample point (x;f, y;i) can be chosen to be any point in the subrectangle R,,, butif
we choose it to be the upper right-hand corner of R;; [namely (x,, v;), see Figure 3|, then

the expression for the double integral looks simpler:

m n

(6] f fx,y)dA = lim X X f(x,y) AA

m,n—>x i=1 _j:l

R
By comparing Definitions 4 and 5, we see that a volume can be written as a double

integral:

If f(x,y) = 0, then the volume V of the solid that lies above the rectangle R and

below the surface z = f(x, y) is
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The sum in Definition 35,

m n
'El 2 /(X:T, yf,’) AA
=1
1: cillle(.i a double Riemann sum and is used as an approximation to the value of the
.Oul ¢ ll1t§g1-al_ INotice how similar it is to the Riemann sum in (1) for a function of a
single variable.] If f happens to be a positive function, then the double Riemann sum

represents the sum of volumes of columns, as in Figure 5, and is an approximation to the
volume under the graph of f.

EXAMPLE 1 Estimate the volume of the solid that lies above the square

' /(‘fl,, e 2.2) R =10,2] X [0, 2] and below the elliptic paraboloid z = 16 — x* — 2y’ Divide R into
) ! l four equal squares and choose the sample point to be the upper right corner of each
Ro Ry square Rj;. Sketch the solid and the approximating rectangular boxes.
Tl et (2,1) SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
AR flx,y) =16 — Xt - 2y* and the area of each square is AA = 1. Approximating the
w volume by the Riemann sum with m = n = 2, we have
e &
a0 2

2
V=3

i=1 j

f(xf? yj) AA

1

=f(1,1)AA + f(1,2) AA + f(2, 1) AA + f(2,2) AA

13(1) + 7(1) + 10(1) + 4(1) = 34

This is the volume of the approximating rectangular boxes shown in Figure 7. |

We get better approximations to the volume in Example 1 if we increase the num-
ber of squares. Figure 8 shows how the columns start to look more like the actual solid
and the corresponding approximations become more accurate when we use 16, 64, and
256 squares. In Example 7 we will be able to show that the exact volume is 48.

FIGURE 7

FIGURE 8

;he Riemann sum approximations to
e volume under 7 = 16 — x* — 2y?

become more accurate as
m and n increase. (Qm=n=4,V=415 (bym=n=8,V= 44875 (©m=n=16,V~ 46.46875

EXAMPLE2 IfR = {(x,y) | =1 S x <1, =2 <y < 2}, evaluate the integral

ﬂ JT—x2 dA

R
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A

.0 tion § | , - (). we can compute the integral by lnlv!‘[)r(tli“p i
oS but, because /1 o » WO o thte Eiven LAY

, . , ol | I and z = 0, s0 the given doyh)e iNte
A ; volume, If - V1 Vothen o : Cry

" /,

e e e seircular eylinder 7
represents the volume of the solid S that fies below the circular eylinde i |
ol y “'”li(llﬁ'
2

, ihis intesrral directly |,
SOLUTION It would he very difficult to evaluate this integral directly from l)v],,”

o T anre 0 The vol S 18 the are
and above the rectangle R. (See Figure 9.) lh(l}/ullllllt I i
s . : . NP H v T [
with radius 1 times the length of the eylinder. Thu

(L0, 0 02,0 T “ \/l ’\ JdA ",Tr(l)" X4 21r
W

B The Midpoint Rule

The methods that we used for approximating single inlcgrals (the Mi(lpnim Rule "
Trapezoidal Rule, Simpson’s Rule) all have coun[crpurrls’lor double Integralg. Hcré ‘,l
consider only the Midpoint Rule for double integrals. This means lh“', We use 4 df)uh;:
Riemann sum to approximate the double integral, where the sample point (xf, ¥in /(”

is chosen to be the center (x;, y;) of R;;. In other words, x; is the midpoint of [, X g

¢

Y is the midpoint of [ y,-, y;].

Midpoint Rule for Double Integrals

n n

[[renaa =3 3 1z 5) a4

i=1 j=I

where X; is the midpoint of [x;-, x;] and y; is the midpoint of [yi-1, ).

EXAMPLE 3 Use the Midpoint Rule with m = n = 2 to estimate the value of the
integral J‘.I.R (x — 3y?) dA, where R = {(x, Y ]0sx<s21=< y <2}

71 SOLUTION In using the Midpoint Rule with m = n = 2, we evaluate flx,y)=x- 3
‘ at the centers of the four subrectangles shown in Figure 10. So x, X )
and y, = 7. The area of each subrectangle is AA = 3. Thus

L
25 A2

AN J[=3aa~ 3 3 1:,5) a4
| [E—— — 3 i=1 j=]
= (0, 31) AA + f(%1,52) AA + £(%,51) AA + f(5, 50) A
X =f(.3) 84 + £(5.1) A4 + £(3,3) A4 + £(3,7) a4

= (~te)2 + (=53 + (=34 + (-2

FIGURE 10

Thus we have ff (x = 3y*)dA =~ —11.875

R

Midpoint Rule
approximation

Number of _ .

subrectangles NOTE In Example 5 we will see that the exact value of the double integral in Exat

: =7 00 ple 3 is —12. (Remember that the interpretation of a double integral as a volume s valid

" —11‘8750 only when the integrand f is a positive function. The integrand in Example 3 is not 4

- —11‘9687 positive function, so its integral is not a volume. In Examples 5 and 6 we will discts*

py Y '9922 how to interpret integrals of functions that are not always positive in terms of volu.mffs'

' If we keep dividing each subrectangle in Figure 10 into four smaller ones with 51ml!ar

256 —~11.9980 o o . : argin.
shape, we get the Midpoint Rule approximations displayed in the chart in the m

1024 —11.9995 . P : | 12
Notice how these approximations approach the exact value of the double integral.
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® Iterated Integrals

Reca]] that it ; N
7 imegrz:’]tblustli;‘;ﬂ::'l)]’ls;f‘;f: ':'l;’rl?valume single integrals difectly from the d_eﬁnition of
The evaluation of double‘inh? -.dl I.] corem of Caiculus provides a much easier method.
see how to €xpress a doubl ‘L.bld s.'ﬁ om m-s_t prmcnplcs is even m(,re difficult, but here we
by calculating two single . l\m.cgl‘” as an iterated integral, which can then be evaluated
Suppose that j.‘g L‘lngmIs. ‘

R=la b] X [‘(‘ ;;]IS\K;‘xil]}]\mm o ‘YV() Y,Z,"‘.iﬂhlcs that is integrable on the rectangle
flx. ) is inte ’l"lilc wi |L l~IS~L the notation | f(x, y) dy to mean that x is held fixed and
tial I:Hreqr(m-(i’ “ ";l qul‘l respect to y Ir(.)m y=cloy= d. This procedure is called par-
‘.d flx ) dyis: vith respect to y. (Notice its similarity to partial differentiation.) Now
Je JAX VI dy 1s a number that depends on the value of x, so it defines a function of x:

A(x) = f(_'/‘/'(x, y)dy

If we now integrate the function A with respect to x from x = ato x = b, we get

f’)A(x) dx = Lh |:£df(x, y) dy] dx

a

The integral on the right side of Equation 7 is called an iterated integral. Usually the
brackets are omitted. Thus

[ sy dyax=1" [ ['reey) dy] dx

means that we first integrate with respect to y from ¢ to d and then with respect to x from

atob.
Similarly, the iterated integral

B [ [ ey axay =" [ [ ey dx] dy

means that we first integrate with respect to x (holding y fixed) fromx = atox = b and
then we integrate the resulting function of y with respect to y fromy=ctoy=d.
Notice that in both Equations 8 and 9 we work from the inside out.

EXAMPLE 4 Evaluate the iterated integrals.
3 (2 2 (3
(2) fo L X%y dy dx (b) L fo X2y dx dy

SOLUTION
(a) Regarding x as a constant, we obtain

) 2 2 2
2 4 _ 2 Y ___22_ _2_1_ -
pevo=[5]=+(3) -+ (3)

Thus the function A in the preceding discussion is given by A(x) = 3x?in this
example. We now integrate this function of x from 0 to 3:

[ fevivan= [ ]

3

3
_ (P, X | =20
jozxdx 2]0 5

2

12w
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Notice that in Example 4 we obtained the same answer whether we inte
respect (o v or v first. In-general, it turns out (see Theorem 10) that the twr &d Wity
integrals in Equations 8 and 9 are always equal; that is, the order of inge O-IQTa‘ed
not matter. (This is similar to Clairaut’s Theorem on the equality of the = oton Oy
derivatives.) Mixed panial

The following theorem gives a practical method for evaluating a doubje inte

gr

expressing it as an iterated integral (in either order). il
5 S o
orem 10is named after the Fubini’s Theorem If £ is continuous on the rectangle )
an mathematician Guido Fubini R ={(x,y) , a<x<bh o< % )
9-1943). who proved a very gen- )
-ersion of this theorem in 1907. J-f Yy .
he version for continuous functions ) f(X, y) dA = L J: f(x, y) dy dx = j‘( J‘a f(x, V) dx oy
nown to the French mathematician
tin-Louis Cauchy almosta cen- More generally, this is true if we assume that f is bounded on R, f is discontin
rlier. uous only on a finite number of smooth curves, and the iterated integrals exis;

The proof of Fubini’s Theorem is too difficult to include in this book, but we cap y
least give an intuitive indication of why it is true for the case where Fx,y) = 0. Recal
that if f is positive, then we can interpret the double integral Ilr f(x, y) dA as the volume
V of the solid S that lies above R and under the surface z = f(x, ¥). But we have another

formula that we used for volume in Chapter 5, namely,

V= LbA(x) dx

1 where A(x) is the area of a cross-section of S in the plane through x perpendicular to the
x-axis. From Figure 11 you can see that A(x) is the area under the curve C whose eque

[ 15.1 illustrates Fubini’s tion is z = f(x, y), where x is held constant and ¢ < vy < d. Therefore

' showing an animation of

ind 12. "

A = | f(x, ) dy

.
and we have

fff(x,y) dA =V = LbA(x) dx = J'u”f:’f(x,y) dy dx

A similar argument, using cross-sections perpendicular to the y-axis as in Figure
shows that

Jlremaa=["[ sy dxay
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EXAMPLE 5 g,

R ={(x. W | 0 aluate the double inte

S«\‘Sz.ls\»sz

gral [ (x — 3v?) dA, where

1. (Compare with Exam
. : ample 3.)
SOLUTION 4 Fubini’s Theorem gives

‘h‘ (v =3y gA — ‘(: j.lz (X = 3y dy dy = ‘(: [X.\' —y \]vﬂ

L dx

_ D) ‘ x} 2
Jn (x 7)dx = ‘2‘ = 7Y} = —12

A0

SOLUTION 2 Again

applying Fubini's Theor [
v s Theor ‘
10 v first, we have e

time integrating with respect

‘h‘ (v = 3y aA = j': ‘(. (x — 3y?)

dx dy

o the negative answer i

EO 113 S nolhinw i\\ Wrong \\;itl

. -n ™ ~ e = 1
\ ‘O" ’ 18 NO ‘tl\,v
( al. ¢ hllldl not a ]:

n
spetion, 80 1S integral doesn’t repre-
fm , volume. From Figure 13 we see
;m #1s always negative on R, so the
@ué of the integral is the negative of
e volume that lies above the graph of
2 and below R. NN
NN
FIGURE 13
For a function f that takes on EXAMPLE 6 Evaluate j‘j‘R ysin(xy) dA, where R = [1,2] X [0, 7).
th positive and negative values, . .
bo ﬂioil) Aisa difcferen ce of volumes: SOLUTION If we first integrate with respect to x, we get
V- \ where V is the volume above o
Rand below the graph of £, and V, H y sin(xy) dA = f j y sin(xy) dx dy
is the volume below R and above the R o
graph. The fact that the integral in - =2
Example 6 is 0 means that these two = L [—COS(-\‘.\’)]V\-:I dy
volumes V, and V, are equal. (See
Figure 14, o
gure 14.) — j (—cos 2y + cos v) dy
0
= —1sin2y + sin _\‘]O =0 [

NOTE If we reverse the order of integration and first integrate with respect to y in
Example 6, we get

jj ysin(xy) dA = ‘: j: ysin(xy) dy dx

R

but this order of integration is much more difficult than the method given in the exampl
because it involves integration by parts twice. Therefore, when we evaluate double inte
grals it is wise to choose the order of integration that gives simpler integrals.
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EXAMPL E 7 Find the volume of the solid S that is bounded by the ellipti
C

YT 2y 4 2 = 16, the planes x = 2 and y = 2, and the three Coordingge plarab()l"id
. ) . ; an
SOLUTION We first observe that S is the solid that lies under the Surfac e,
> - 2 ) : e
2 16— v"  2y?and above the square R = [0, 2] % [o, 2]. (See Fi
solid was considered in Example |, but we are now in a position tg ev-f] re 15, hi
: : \ SotarE ) . S
Integral using Fubini's Theorem. Therefore Uate the o
le

V = /“ (16— x> — 2y?)dA = .’;: .[f (16 — x2 — 2y%) dy

FIGURE 15 )
= ’0 (81‘8 - 4.)"2) dy = [8}_8)) — %1}!3]0 = 48

In the special case where Sf(x, y) can be factored as the product of , funct;
and a function of y only, the double integral of f can be written in a partjc 110“ Ofxonly
form. To be specific, suppose that Fe,y) = g(x0)h(y) and R — [a. b] Xu[a”)’ Simpye
Fubini’s Theorem gives ¢ d] Thep

[Jreyran= " [* gonty) dx ay = [l [ [/ 9oy dx] dy

In the inner integral, y is a constant, so A(y) is a constant and we can write

fcd [fab g(x)h(y) dx] dy = f l:h(y)<f: g(x) dX>] dy = Lb g(x) dx f h(y) dy

. b . . .
since |, g(x) dx is a constant. Therefore, in this case the double integral of f can be wri.
ten as the product of two single integrals:

L@ ff 9(x) h(y) dA = Lb g(x) dx f h(y)dy  where R = [a, b] X [c,d]

EXAMPLE 8 If R = [0, /2] X [0, 7/2], then, by Equation 11,

3 /2 w/2
ffsmx cosya’A=fO smxdxfo cos ydy
R

= [—cosx];r/z[siny]g/2= l-1=1

ction f(x, y) = sin x cos y in
> 8 is positive on R, so the
represents the volume of the
 lies above R and below the
/ shown in Figure 16.
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B Average Value

Recall from Section 5.5 that the average value of a function f of one variable defined on
an interval [a, b] is
1

b — a

b
Fve = |7 rx) dx
a
. S . . . ed
In a similar fashion we define the average value of a function f of two variables defin

on a rectangle R to be

S .
.Invc - /\(R) Rj‘ j(x, y) dA

where A(R) is the area of R.
If f(x,y) = 0, the equation

AR) X fue = || f(x, ) A

says that the box with base R and height f;,. has the same volume as the solid that li;als
under the graph of f. [If z = f(x, y) describes a mountainous region and you chop off the
tops of the mountains at height f,,., then you can use them to fill in the valleys so that the

region becomes completely flat. See Figure 17.]

GURE 17

EXAMPLE 9 The contour map in Figure 18 shows the snowfall, in inches, that fell on the
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to
estimate the average snowfall for the entire state of Colorado on those days.

© 2016 Cengage Learning®

FIGURE 18
SOLUTION Let’s place the origin at the southwest corner of the state. Then 0 < x < 3¢

0 <y <276, and f(x, y) is the snowfall, in inches, at a location x miles to the east ai
y miles to the’ north of the origin. If R is the rectangle that represents Colorado, then |

average snowfall for the state on December 20-21 was

fave = X(IJT) H f(x,y) dA
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where A(R) = 388 - 276. To estimate the value of this double integry) let
Midpoint Rule with m = n = 4. In other words, we d"“de_ Rinto 16 Slere‘c[uxe the
cqual size, as in Figure 19. The area of each subrectangle is Angle, "

AA = {5(388)(276) = 6693 mi>

276

=) l © 2016 Cengage Learning®

FIGURE 19

Using the contour map to estimate the value of f at the center of each subrectangle,
we get

4

4
[[1eyar~3 S £, 5) a4
® i=1 j=1
~AA[0+15+84+7+2+25+ 185 + 11
TASHWH 17T+ 135+ 12+ 15 + 175 + 13]

= (6693)(207)

6693)(2
Therefore Jave = ((388)% ~ L

On December 20-21, 2006, Colorado received an average of approximately 13 incheSI
of snow.



1 EXERCISES

he volume of the solid that lies below the surface
d above the rectan gle

15
Slimﬂte !
;l) s X\ an

’ R‘{(.\'.)‘)’O$X$6_Osh\,$4}

e a Riemann sum withm = 3. n = 2 and take the

?ﬂ le point to be the upper right corner of cach square.
;,156 the Midpoint Rule to estimate the volume of the solid
in pal'[ (ﬂ)

1

)

[0 4] X [-1.2]) usea Riemann sum with m = 2.
2 10 o estimate the value of ||, (1 = v dA. Take (he
! .le oints to be (a) the lower right corners and (b) the upper
1 . .
sa;: Eoﬂle"s of the rectangles.
le
) Use Riemann sum with = n = 2 1o estimate the value
a of flexe " dA: where R = [0. 2] X [0. 1]. Take the sample
oints to be upper right corners.
o) Use the Midpoint Rule to estimate the integral in part (a).

w

@ Estimate the volun}e of the solid that lies below the
qurface = = 1 + x° + 3vand above the rectangle
r=[1.20X% [0. 3]. Use a Riemann sum with m = n = 2
and choose the sample points to be lower left corners.

(b) Use the Midpoint Rule to estimate the volume in part (a).

F

5. Let V be the volume of the solid that lies under the graph
of flxy) = /32 — x* — y? and above the rectangle given
pl<x<42sys 6. Use the linesx = 3and y = 4 to
divide R into subrectangles. Let L and U be the Riemann sums
computed using lower left corners and upper right corners,
respectively. Without calculating the numbers V. L, and U.
arange them in increasing order and explain your reasoning.

A 20-ft-by-30-ft swimming pool is filled with water. The depth
i« measured at 5-ft intervals, starting at one corner of the pool.

and the values are recorded in the table. Estimate the volume of

water in the pool.

F 0 5 10 15 20 25 30
0 2 3 4 0 7 8 8
5 2 3 4 7 8 10 8

k& 2 4 0 8 10 12 10
IS 2 3 4 5 0 8 7

0] 2 2 2 3 4 d

7. A contour map is shown for a function f on the square
k=10, 4] x [0, 4].
(@) Use the Midpoint Rule with i = n = 2 to estimate the
value of ([, f(x, y) dA.
(b) Estimate the average value of f.

.\'w
4
AR N/ /
10 0 0 10 20 30
X
%
J R A
/ A ‘ \
2 /
/ 10
/ 20
/
10
/ } 1 \ L} »
0 p) (.

in degrees Fahrenheit.

8. The contour map shows the temperature,
at 4:00 M on February 26, 2007, in Colorado. (The state meas
sures 388 mi west (o cast and 276 mi south to north.) Use
the Midpoint Rule with m = n
temperature in Colorado at that time.

~ 4 10 estimate the average

9-11 Livaluate the double integral by firstidentifyg atas the

volume of a solid.
9. ([, V2 dA. R
10, [, 2v + DdA. R
M, 20 dAc R

fow) [ 2= v=6, 1 =y=5}
o [0 ¥ 205y < 4

[0, 1] X o, 1]

12. 'The mtepral )l‘f,\. O v dA where R 04X 10, 2.
represents the volume ol asolid, Sketeh the solud.
13-14 lind ,“(; SO y) dvand L: S ) dy

13, /() = iy 14, /(v ) v +2

15-26 Caleulate the iterated ntegral.

15 [Ty 20 dvay 16 || (v
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1 [2
17. ¢ ) :
J; [I (x+ e ) dx dy
7/6 [/ . .
18. J; J;) : (sinx + sin y) dy dx
s Iny

20. _[I" [Ty ax

3 w/2
19. f ( (y + y*cos x) dx dy
-3.Jo - | Xy

21. f,d f,z <% + :—) dy dx
3. [ 2 sin'g d an
24, ";1 “: Xyvx? + y2dy dv

25, (;)I ’01 v(u + v))* du dv

2 ,
22, ' ‘ ve' dxdy
JooJo

26. _L' JO' Js + 1 dsdr

27-34 Calculate the double integral.

27. ” xsec’ydd, R= {(xy) | 0sx=<20<y=<n/4}
R

28 ([(v+x7)dA, R={xy) |0<x<21<y<2)

R

29.

xy?
. = sx<1,-3<y<3
fxz 1 dA, R={(x,y) |0sx<1,-3<y }

X i—

30. fﬂd/a, R={0,0 ]| 0<p<m/30=r=<1)

— 2
W1 =1

31. f f xsin(x + y)dA, R = [0, 7/6] X [0, 7/3]

X
32. g Ty A R=10.11x00.1]

33. ff ye™dA, R =1[0,2]x [0,3]
R

]
. - . . ’ = 9 X 72
34 ﬂ1+x+ydA R=[1,3]x[1,2]

35-36 Sketch the solid whose volume is given by the iterated
integral.

3. J;]fo](4—-x—2y)dxdy

36. fo' L’ 2 = x*=y*)dydx

37. Find the volume of the solid that lies under the plane
4x + 6y — 2z + 15 = () and above the rectangle
R={(X,)’) ]‘1 sxs2 -1 sys|l}.

38. Find the volume of the solid that lies under the hyperbolic
paraboloid z = 3y — x2 4 2 and above the rectangle
R=[-1,1]x[1,2].

39. Find the volume of the solid lying under the ellipy
paraboloid x*/4 + y/9 +z = 1and above the reIC
R=[-1,11%[-2.2] ang,

40. Find the volume of the solid enclosed by the surfy
z=x? + xy”and the planes z = 0, x = (), _ SCe
and y = *2. '

41. Find the volume of the solid enclosed by the SUrfyc

z =1+ x’ye” and the planes z = 0, x = + Y=g

andy = I.

42. Find the volume of the solid in the first octant by,

un,
the cylinder z = 16 — x* and the plane y = . deg by

43. Find the volume of the solid enclosed by the
z=2+ x>+ (y — 2)*and the planes ; = |
x=~1l,y="0andy=4.

Parabmoi(I

X =

/1 44. Graph the solid that lies between the surface
z = 2xy/(x* + 1) and the plane z = x + 2y and i boy
by the planes x = 0, x = 2,y = 0,and y = 4, They ﬁngqed
volume. itg

8 45. Use a computer algebra system to find the exact value of y,
integral [[, x°y’e* dA, where R = [0, 1] x [0, 1 Thenue
the CAS to draw the solid whose volume is given by the e
integral.

[@§ 46. Graph the solid that lies between the surfaces
2= e cos(x? 437 andz =2~ x gy o
|y| < 1. Use a computer algebra system to approximate t,
volume of this solid correct to four decimal places,

47-48 Find the average value of f over the given rectangle.

47. f(x,y) = x*y,
R has vertices (— 1, 0), (=1, 5), (1, 5), (1, 0)

48. f(x,y) = e’vx + e, R=10,4] X [0, 1]

49-50 Use symmetry to evaluate the double integral.

= = —I<sxys10sy<lI
49.£f1+x4dA, R={(xy) | ~l<x<10<y<l

50. ﬂ (1 + x?siny + y’sinx) dA, R=[-m m]X[-77]
R

™ 51. Use a CAS to compute the iterated integrals

X =y L1 X—y dxd\'
J‘ojo (x+y’

1 (1
fo fo m dy dx and
Do the answers contradict Fubini’s Theorem? Explain what
is happening.

52, (a) In what way are the theorems of Fubini and Clairat!
similar?
(b) If f(x, y) is continuous on [a, b] X [c, d] and

g(x,y) = LX f: f(s, 1) dt ds

_ #(xy)
fora < x < b,c <y <d,show that g, = g =fi

g
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