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15.2 Doub Double Integrals over General Regions 
Sngie integrals, the region over which we integrate is always an interval. But 
double integrals, we want to be able to integrate a function f not just over rectange 
dIso over regions D of more general shape, such as the one illustrated in Figure 1. we su 

pose that Dis a bounded region, which means that D can be enclosed in a rectanE 

region R as in Figure 2. Then we define a new function F with domain K DY 

Sx, y) if (x, y) is in D 

lo F(x. y)= if (x, y) is in R but not in D 

yA 

D 

FIGURE 1 FIGURE 2 

IfF is integrable over R, then we define the double integral of f over D by 

2 J s ) dAj Flx,y) dA where F is given by Equation I 

D 

Definition 2 makes sense because R is a rectangle and so F(x, y) dA has been previ-

ously defined in Section 15.1. The procedure that we have used is reasonable because the 

values of F(x, y) are 0 when (x, y) lies outside D and so they contribute nothing to 

the integral. This means that it doesn't matter what rectangle R we use as long as it con-

tains D. 

In the case where f(x, y) = 0, we can still interpret p fx, y) dA as the volume of the 

solid that lies above D and under the surface z = flx, y) (the graph of f). You can see that 

this is reasonable by comparing the graphs of f and F in Figures 3 and 4 and remember-

ing that Jg F(x, y) dA is the volume under the graph of F. 

graph of f 
graph of F 

A 

FIGURE 3 
FIGURE 4 

Figure 4 also shows that F is likely to have discontinuities at the boundary poin 

of D. Nonetheless, if fis continuous on D and the boundary curve of D is "well behaves 

(in a sense outside the scope of this book), then it can be shown that , F(x, y) dA exi= 
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EXAMPLE 5 Evaluate the itcrated integral Jo sin(y)dy dx. 
SOLUTION If we try to evaluate the integral as it stands, we are faced 

of first evaluating sin(y) dy. But it's impossible to do so in finite terthe 

sin(y ) dy is not an elementary function. (See the end of Section 7 5 Ce 
change the order of integration. This is accomplished by first expressi Weh 
ated integral as a double integral. Using (3) backward, we have 

wi 

nressing the 
gven t 

Lsin(y )dy dx - || sin(y ) dA 

D -.) |0<rs1, Sysif FIGURE 15 where 

We sketch this region D in Figure 15. Then from Figure 16 we see thatan. 

description of D is 

Das a type I region 
hat an alternative 

D {(. y) |0<ys l, 0<x5y 

This enables us to use (5) to express the double integral as an iterated inteor 
reverse order: =0 

sin(y)dy dx = || sin(y*) dA 

-sin(y ) ds dy- x sin(y )]dy 
FIGURE 16 

- y sin(y)dy =- cos(y*)|, = }0 -

cos ) 
D as a type II region 

Properties of Double Integrals 
We assume that all of the following integrals exist. For rectangular regions D the ir three properties can be proved in the same manner as in Section 4.2. And then for gener regions the properties follow from Definition 2. 

6 JJ LSr y) + glr. y)] dA = |} fa. y) dA + } gt. y) dA 
D 

where c is a constant 

If fx, y) glx, y) for all (x. y) in D, then 

8 , y) dA > || gtr, y) dA 
D D 

The next property of double integrals is similar to the property of single ineg given by the equation Ja f) dr = Ja fX) dx + fx) dx. 
If D = D U D2, where D, and D, don't overlap except perhaps on their bou (see Figure 17), then 

D 

danës 
D D2 

f, y) dA = || fa. y) dA + || f.y)AA 
D1 D2 URE 17 
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er Property 9 can be used to evaluate double integrals over regions D that are ne 
type I nor type Il but can be expressed as a union of regions of type I or type . rig 

illustrates this procedure. (See Exercises 57 and 58.) 

18 

A 

D 

D D 

x 

(a) D is neither type I nor type II. (b) D = D,U D, D, is type I, D, is type II. FIGURE 18 

The next property of integrals says that if we integrate the constant function f{x, y)=1 

over a region D, we get the area of D: 

10 1dA AD) 

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is D and 

whose height is 1 has volume A(D) 1 = A(D), but we know that we can also write its 

volume asJ, 1 dA. 

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See 

Exercise 63.) 

=1 

D 11 If m f(x, y) < M for all (x, y) in D, then 

mA(D) || fla, y) dA = MA(D) 
FIGURE 19 
Cylinder with base D and height 1 

EXAMPLE 6 Use Property 11 to estimate the integral ,esn cos dA, where D is the 

disk with center the origin and radius 2. 

SOLUTION Since la sin xa| and -1S cosy 1, we have 

-1 sinx cos y l and therefore 

e e Sn x cOs S e' = e 

Thus, using m = e"l = 1/e, M = e, and A(D) = T(2} in Property 11, we obtain 

4TT 
in x cs ' dA 4Te 

e 
D 
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15.2 EXERCISES 

1-6 Evaluate the iterated integral. 17-22 Evaluate the double integral. 

=0. yxx=| 1.(8-2y) dy dx 2. yds dy 17.rcos y dA. D is bounded by y = 0. v 

18. (r'+2y) dA. Dis bounded by y =x.u_ yy-.yr. 3.edd sin y dy dr D 

19.y dA cos(s ) di ds 6. 1+e dw dv 
D is the triangular region with vertices (0, 1).(1.2. (a 

20. xy dA. D is enclosed by the quarter-circle 7-10 Evaluate the double integral 
y = VI-x?, x > (0, and the axes dA D ={(x. y) |0ss 4,0y V 

21. (2x - y) dA. 
D 

8. (2x + y) dA. D = {(r. y) | 1 <ys 2. y - 1 sxs|1} Dis bounded by the circle with center the origin and and rading 
22. || y dA, Dis the triangular region with vertices (0, 9. 1| e dA. D = {(x,. y) | 0<y s 3,0 <x<Fy 

(1, 1), and (4, 0) D 

10. yyx - y? dA. D = {lx. y) |0 <x< 2.0y x 23-32 Find the volume of the given solid. D 

23. Under the plane 3x + 2y z = 0 and above the regior enclosed by the parabolas y =x' and x = y? 
region 

11. Draw an example of a region that is 
(a) type I but not type II 
(b) type II but not type I 

24. Under the surface z= l+xy* and above the region enclosed by x = y* and x = 4 

25. Under the surface z = 

ry and above the triangle with 
vertices (1, 1), (4, 1), and (1, 2) 

12. Draw an example of a region that is 
(a) both type I and typeII 
(b) neither type I nor type II 26. Enclosed by the paraboloid z =x* +y* + l and the plane x = 0, y =0,z = 0, and r + y =2 

13-14 Express D as a region of type I and also as a region of 

type II. Then evaluate the double integral in two ways. 27. The tetrahedron enclosed by the coordinate planes andthe 
plane 2r + y +z = 4 

13.x dA, Dis enclosed by the lines y = x, y = 0, x =1| 28. Bounded by the planes z =x, y = x, x + y =2. and: =0 
D 

29. Enclosed by the cylinders z =r, y = r and the planes 
z = 0, y =4 14. xy dA, Dis enclosed by the curves y = x, y = 3x 

30. Bounded by the cylinder ys +z'=4 and the planes r= 
x = 0,z ==0 in the first octant 

15-16 Set up iterated integrals for both orders of integration. 
Then evaluate the double integral using the easier order and 
explain why it's easier. 

31. Bounded by the cylinder + y = l and the planes y= 
X = 0,z =0 in the first octant 

32. Bounded by the cylinders + y = r and y+#=r 
15. y dA, Dis bounded by y = x - 2, x =y 

33. Use a graphing calculator or computer to estimate the 

X-Coordinates of the points of intersection of the curves 

y =x and y = 3x - x. If D is the region bounded by m 

curves, estimate lp x dA. 

D 

16. y'e"dA, Dis bounded by y = x, y = 4, x = 0 
D 
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imate volume of the solid in the first octant 
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Find the approxima 

unded by the planes y= x, z = 0, and z =x and 53. +1 dy d dx 
that is bound 

the points 
of intersection. 

the volume of the solid by subtracting two volumes 

cylinder y= cos x. (Use a graphing device to estimate 
the 

S4. y cos(x - 1) dx dy 
35-38 

35. The solid 
enclosed by the 

x-1 and the planes x+ y +z = : 

2x + 2y 
z+ 10 = 0 

1id enclosed by the parabolic cylinders y = 1 -? 55. 
cos x 1 + cos2x dx dy arcsin 

the parabolic cylinder y = x and the 

56. e" dx dy solid enclosed by 
36. 

planes z =3y, z= 2 + y 

= 3, above the plane z = 

37. 
The 

solid under the plane z S/-58 Express D as a union of regions of type I or type 11 arnd 

evaluate the integral. , and 

The solid in the first octant under the plane z =x + y, above 
38. rface z =Xy, and enciosed by the surfaces x = 0, 

betwee the parabolic cylinders y= * and y = I - x2 

57.xdA 58. y dA 
D 

4 
y= 0, and r^ + y2. 

yA X=y= y' 

39-40 Sketch the solid whose volume is given by the iterated 
(1,1 y= (x+ 1/ 

integral. 

39. -*- ) dy dx 40. (1 -) dy dx 

41-44 Use a computer algebra system to find the exact volume 

of the solid. 

41. Under the surface z =x*y" +xy and above the region 
bounded by the curves y=x - x andy = x2 +x 

for x 0 

59-60 Use Property 11 to estimate the value of the integral. 

59. 4r*y? dA, S = {(a. ) |x +yI,x 0} 

42. Between the paraboloids z = 2x + y and 

z 8 x - 2y* and inside the cylinder x2+ y2= 1 60.sin(x + y) dA, Tis the triangle enclosed by the lines 
T 

43. Enclosed by z = 1 - x2 y and z = 0 y= 0, y= 2x, and x = 1| 

44. Enclosed by z = x +y and z = 2y 

61-62 Find the averge value of f over the region D. 

45-50 Sketch the region of integration and change the order of 

integration. 

61. fx, y) = xy, D is the triangle with vertices (0, 0), (1,0). 

and (1,3) 

45. Fx.y) dx dy 46. J J, fl, y) dy dx 
62. fx, y)= x sin y, Dis enclosed by the curves y = 0, 

yx, and x =1 

47. fa. y) dy dx 48. (V4-y fx, y) dx dy 
63. Prove Property 11. 

49. fa.y) dy dx 
64. In evaluating a double integral over a region D, a sum of 

iterated integrals was obtained as follows: 
50. fx, y) dy dx 

arctan 

-s6 Evaluate the integral by reversing the order of integration. 
fa) dA- fC«. ) dx dy + sa. ) dr dy 

D 

51. dx dy Sketch the region D and express the double integral as an 

iterated integral with reversed order of integration. 
52. y sin y dy dx 
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68.2+ry y sin x) dA, 
65-69 Use geometry or symmetry. or both. to evaluate the 

double integral. 

65. (+ 2) dA. 
69. | (ax' + hy' + ya'-x) dA, 

D =( v)|0 sys 9-
D= -a, al x [-b. b] 

66. R:-- dA. 

CA 70. Graph the solid bounded by the plane X the paraboloid z = 4 -y and find its 

Dis the disk with center the origin and radius R 

(Use your CAS to do the graphing, to find acty the boundary curves of the region of intea a evaluate the double integral.) 

67. 1| 2 + 3y) dA 

quationg 
and to 

Dis the rectangle 0 <rsa. 0 < y h 

15.3 Double Integrals in Polar Coordinates 

Suppose that we want to evaluate a double integral }Jp f, y) dA, where : Ris one regions shown in Figure 1. In either case the description of R in terms o coordinates is rather complicated, but R is easily described using polar coorg rdinates 

+y=1 
x*+y*=4 R 

R 
0 

0 

r+y| 
FIGURE 1 (a) R={tr, 0) |0<rs1,0<0=2T} (b) R= {(r, 8) | 1srs 2,0s#s 

Recall from Figure 2 that the polar coordinates (r, 0) of a point are related to the rat angular c0ordinates (x, y) by the equations Pr, 6) = P(x, y) 

r=+ y? X=rcos 6 y= rsin 6 

(See Section 10.3.) 
The regions in Figure 1 are special cases of a polar rectangle 

RE 2 

R r, 0)| asrsb, a s0 B 
whee which is shown in Figure 3. In order to compute the double integral Ie J1f R 1s a polar rectangle, we divide the interval [a, b] into m subintervals .r-width Ar = (b - a)/m and we divide the interval [a, B] into n subinte de divide of equal width A0 = (B - a)/n. Then the circles r= r and the rays 

polar rectangle R into the small polar rectangles R shown in Figure 4 
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