MATH 244 Summer 2019 Final Exam

Name: ____

Instructions:

- You have 80 minutes to complete this exam.
- You may use a scientific calculator and a 8.5x11 cheat sheet during the exam (one side)
- You must show all of your work. Answers which are cryptic or have no supporting evidence will most likely not receive full credit. When in doubt, ask.
- Please be organized! Answer questions in the space provided as neatly as possible. If you run out of room, continue on a piece of scratch paper and make a clear note of it.

Question	Points	Score
1	10	
2	13	
3	7	
4	26	
5	6	
6	18	
7	14	
Total:	94	

1. (10 points) Compute the counterclockwise circulation of $\mathbf{F} = (x - y)\mathbf{i} + (x + y)\mathbf{j}$ around the boundary of the top half of the unit circle in the *xy*-plane: $x^2 + y^2 \leq 1$ and $y \geq 0$.

2. (13 points) Find the surface area of the portion of the paraboloid $z = x^2 + y^2$ cut by the planes z = 1 and z = 4.

3. Consider the integral

$$\int_0^2 \int_0^{2-2y} \int_0^{2-2y-z} f(x,y,z) dx dz dy.$$

- (a) (4 points) Sketch the region of integration.
- (b) (3 points) Change the order of integration to dzdydx.

- 4. Let S be the upper half of the unit sphere oriented outward S: $x^2 + y^2 + z^2 = 1$ and $z \ge 0$. Let $\mathbf{F} = -y\mathbf{i} + z\mathbf{k}$.
 - (a) (18 points) Compute the outward flux of $\nabla \times \mathbf{F}$ across the surface S.
 - (b) (8 points) Use Stokes' theorem to verify your answer from the previous part.

- 5. Find the work done be $\mathbf{F} = \nabla(2^{x+y+z})$ in moving an object along the following curves.
 - (a) (3 points) Along the line segment connecting (1, 1, 1) to the point (2, 2, 2).
 - (b) (3 points) Once around the ellipse $x^2 + y^2/4 = 1$.

- 6. Let E be the portion of the solid ball of radius 2 in the first octant E: $x^2 + y^2 + z^2 \le 4$.
 - (a) (10 points) Find the volume of E.
 - (b) (8 points) Compute the outward flux of $\mathbf{F} = x^2 \mathbf{i} 2xy \mathbf{j} + 3z \mathbf{k}$ across the boundary of E.

7. (14 points) Evaluate the integral $\iint_R (x+y)^2 e^{x-y} dx dy$ by using the transformation u = x+y and v = x - y over the region R bounded by the lines x + y = 1, x + y = 4, x - y = -1, and x - y = 1.