Math 244 Summer 2020 Midterm

August 14, 2020

- Please read each problem carefuly and follow the directions of the problem.
- You may answer all the question on this exam, or on a separate medium.
- You have 24 hours to complete this exam. It is due Sunday 8/15/2020 at 12am.
- Authorized aid: the textbook for this course, class notes for this course, and you may use a scientific calculator. However, all answer must be exact, no rounding. All other aid is unauthorized: graphing calculators, google, friends and family, SymboLab, MatLab, notes from other courses, etc.
- Show all of your work. Leaps in logic without justification will not receive credit.
- Please submit clear, organized, legible work using common file formats.

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	13	
7	8	
8	8	
9	11	
Total:	90	

Name and section: $_$

1. (10 points) True/False. You do not have to justify your answer.

(a) For any function $f: \mathbb{R}^3 \to \mathbb{R}$ with continuous third partial derivatives and for any surface S

$$\iint_{S} \nabla \cdot (\nabla \times \nabla f) \cdot d\mathbf{S} = 0.$$

- (b) The vector field $\mathbf{F} = e^{y+2z}\mathbf{i} + xe^{y+2z}\mathbf{j} + 2xe^{y+2z}\mathbf{k}$ is conservative.
- (c) The punctured disk without boundary

$$R = \{ (x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 4 \}$$

is open, connected, and simply connected.

(d) Suppose f(x, y) is a function that satisfies

$$\left|\frac{\partial f}{\partial x}\right| < 1 \text{ and } \left|\frac{\partial f}{\partial y}\right| < 1$$

on the unit disk. Then we can conclude that the surface area of the graph z = f(x, y) over the unit disk is at most $\sqrt{3}\pi$.

(e) If C is any curve in \mathbb{R}^3 that starts on one coordinate plane and ends at the same or different coordinate plane, then

$$\int_C \nabla(e^{xyz}) \cdot d\mathbf{r} = 0.$$

Let E ⊂ R³ be a simple solid and let x = xi + yj + zk be the position vector.
(a) (2 points) Use the divergence theorem to establish the volume formula

$$\operatorname{Vol}(E) = \frac{1}{3} \iint_{\partial E} \mathbf{x} \cdot d\mathbf{S}.$$

(b) (8 points) Verify that the formula above works for the cylinder

$$E = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4, 0 \le z \le 3 \}.$$

3. (10 points) Let S be the elliptical shell

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 4y^2 + 4z^2 = 4, \ z \ge 0\}$$

oriented upward. Let

$$\mathbf{F} = (y^2 - 1)\mathbf{i} + x\mathbf{j} + \tan^{-1}(xyz)(x^2 + y^2)^{3/2}\mathbf{k}.$$

Evaluate

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}.$$

4. Let $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$ and $\mathbf{G} = G_1 \mathbf{i} + G_2 \mathbf{j} + G_3 \mathbf{k}$ be two vector fields with differentiable component functions F_i and G_i . Let $c \in \mathbb{R}$ be a scalar. Then

$$\mathbf{F} + c \cdot \mathbf{G} = (F_1 + c \cdot G_2)\mathbf{i} + (F_2 + c \cdot G_2)\mathbf{j} + (F_3 + c \cdot G_3)\mathbf{k}$$

Prove the following identities

- (a) (5 points) $\operatorname{div}(\mathbf{F} + c \cdot \mathbf{G}) = \operatorname{div}(\mathbf{F}) + c \cdot \operatorname{div}(\mathbf{G}).$
- (b) (5 points) $\operatorname{curl}(\mathbf{F} + c \cdot \mathbf{G}) = \operatorname{curl}(\mathbf{F}) + c \cdot \operatorname{curl}(\mathbf{G}).$

5. (10 points) Find a potential function for the conservative vector field $\mathbf{F} = (\frac{y^2}{x} - yz)\mathbf{i} + (2y\ln x - xz)\mathbf{j} - xy\mathbf{k}$.

6. Let S be the triangular surface parametrized by

$$\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + (2 - y - \frac{2}{3}x)\mathbf{k},$$

where (x, y) lies in the region bounded by the triangle in the xy-plane with vertices (0.0), (3, 0), and (0, 1).

- (a) (5 points) Compute the surface area of S.
- (b) (8 points) Compute the flux of the vector field $\mathbf{F} = \nabla(\ln(x+y+z))$ across S in the upward direction.

7. (8 points) Find the work done by the force field $\mathbf{F} = 2xy\mathbf{i} + y^2\mathbf{j} + \mathbf{k}$ in moving a particle along a straight line path from the point (5, 0, 0) to the point (1, 3, 2).

8. (8 points) Find the flux of the vector field

$$\mathbf{F} = (y^2 + z^4)\mathbf{i} - zx^3\mathbf{j} + (x^2 + y^2 + z^2)^{3/2}\mathbf{k}$$

across the boundary of the solid region given by $x^2 + y^2 + z^2 \le 1$, $x \ge 0$, and $y \ge 0$.

- 9. A unit-speed parametrization $\mathbf{r} : [a, b] \to \mathbb{R}^3$ of a curve is one that satisfies $|\mathbf{r}'(t)| = 1$ for all $a \le t \le b$. One procedure for obtaining a unit-speed parametrization is as follows:
 - 1. Start with a parametrization $\mathbf{r}:[a,b] \to \mathbb{R}^3$ of your curve C.
 - 2. Compute the arc length function $s(t) = \int_a^t |\mathbf{r}'(\tau)| d\tau$.
 - 3. Compute the inverse function $s^{-1}(t)$.
 - 4. Finally, the composition $\mathbf{r}(s^{-1}(t))$ where $0 \le t \le s(b)$ is unit-speed.

For a unit-speed curve C, the *curvature* of C is a function $\kappa: C \to [0, \infty)$ given by

$$\kappa(\mathbf{r}(t)) = |\mathbf{r}''(t)|.$$

The *total curvature* of C is defined as the line integral

$$\int_C \kappa(x,y,z) ds.$$

(a) (3 points) Prove step (4), that is, show that

$$\left|\frac{d}{dt}\mathbf{r}(s^{-1}(t))\right| = 1.$$

Hint: chain rule, the derivative rule for inverses, and the FTC.

- (b) (4 points) Follow steps (1)-(4) to find a unit-speed parametrization for a circle of radius 3 on the *xy*-plane centered at the origin. Careful, the domain of the new parametrization is the range of the arc length function.
- (c) (4 points) Use the parametrization from the previous part to show that the total curvature of a circle of radius 3 is 2π . In fact, every circle has total curvature 2π .