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ystem—the more difficult it often is to solve the System, |,
. For

‘ons in the S . y .
r equations 11 ded to find the partial fraction decomposition of

and/o
instance, SUppOs¢ we nee ]

2+ D2 +4)
: is used to integrate this expression. (In oyr stud
ich. as you saw in calculus, 15 USEC : Y of ¢
X:llca]ce tr;/nsform in Chapter 7, we will see agother plgce wh'ere ﬁnd'mg Partial fa, (}:
decpompositions of expressions such as this arises.) This partial fraction decomPOSitio:
has the form
] Ax+B Cx+D
D@+ 241 X4
and finding it involves solving a system of four linear equations in the four unknowng 4
B. C, and D, which takes more time and effort to solve than the problem with the boat,’

There is no limit to the size of linear systems that arise in practice. It is not unhearq
of to encounter systems of linear equations with tens, hundreds, or even thousangs of

unknowns and equations. .
The larger the linear system, the easier it 1s to get lost in your work if you are ot

careful. Because of this, we are going to begin this chapter by showing you a Systematic
way of solving linear systems of equations so that, if you follow this approach, you wijj
always be led to the correct solutions of a given linear system. Our approach will involye
representing linear systems of equations by a type of expression called a matrix. After
you have seen this particular use of matrices (it will be just one of many more to come) in
Section 1.1, we will go on to study matrices in their own right in the rest of this chapter.

We begin with a discussion of some of the basics.

1.1 SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables or unknowns 1;, v». ..., X, 1S an equation that can

be written in the form
Mxl +ayx; + -+ ayx, =ﬂ

where a;. ay, ... a,, b are constants. For instance,

2x =3y =1
1s a linear equation in the variables x and vy,
3x—y+2:=28

IS a linear equation in the variables x, v, and -. and

-

X5 -y + V2 — 9xs =

is a line ion i - i

. ‘Zrn.i%l;auon n the variables x,. x», x;, x,, and xs. The graph of a linear equation

equation i ‘ hLS sgch 482X — 3y = 1 isa line in the xy-plane, and the graph of a linear
N three variables such ys 3y — ¥ + 22 = 8 is a plane in 3-space.



1.1 Systems of Linear Equations

When considered together, a collection of linear equations

anx) +apx;+ -+ apux, =b

a1 xy + anx; + -+ 4+ ayx, = bz

A1 X1 + Amaxo + -+ AupXn = bm

is called a system of linear equations. For instance,

x—=v+4+z=0
2x =3y +4:=-2
—2x—y+z=7

is a system of three linear equations in three variables.

A solution to a system of equations with variables x|, x., .. .. x,, consists of values
of x{, x3, ..., x, that satisfy each equation in the system. From your first algebra course
you should recall that the solutions to a system of two linear equations in x and y,

anx +apy = b
X + a»ny = b,

are the points at which the graphs of the lines given by these two equations intersect.
Consequently. such a system will have exactly one solution if the graphs intersect in
a single point. will have infinitely many solutions if the graphs are the same line. and
will have no solution if the graphs are parallel. As we shall see, this in fact holds for
all systems of linear equations: that is, a linear system either has exactly one solution,
infinitely many solutions. or no solutions.

The main purpose of this section is to present the Gauss-Jordan elimination
method,’ a systematic way for solving systems of linear equations that will always
lead us to solutions of the system. The Gauss-Jordan method involves the repeated use

of three basic transformations on a system. We shall call the following transformations

elementary operations.

1. Interchange two equations in the system.
2. Multiply an equation by a nonzero number.

o

3. Replace an equation by itself plus a multiple of another equation.

Two systems of equations are said to be equivalent if they have the same solutions.
It is not difficult to see that applying an elementary operation to-a system produces an

equivalent system.

I' Named in honor of Karl Friedrich Gauss ( 1777-1855), who is one of the greatest mathematicians of all time

and is often referred (o as the “prince of mathematics,” and Wilhelm Jordan (1842-1899). a German engincer.
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Matri
To illustrate the Gauss-Jordan elimination method, consider the systen:
O .
x—y+2=0
2y —3y+4z=-2
x—v+z=T.

We are going (o USE elementary operations to transform this system to one of the £
g Orm

X

ré

is a constant from which we have the solution. To this end, |

tion by itself plus —2 times the first equation (or Sl;btraus- first
from the second) and replace the third equation by itsecl?ngz
liminate x from the second and third equations, - plug
simultaneously here.) This gives us the syster € are

where each *
replace the second equa
times the first equation
2 times the first equation t0 €
doing two elementary operations

x—v+z=0
—y+2z=-2
—3y+3z=7.

e the second equation to eliminate y in the first and third equations by
itself minus the second equation and replacing the third

the second equation, obtaining
2

Next, let us us
replacing the first equation by
equation by itself plus —3 times
X -7 =

—y+2:=-2

-3z=13.
ation to eliminate z from the first two equations
by multiplying the first equation by 3 and then subtracting the third equation from it (we
actually are doing two clementary operations here) and multiplying the second equation
by 3 and then adding 2 times the third equation to it (here too we are doing two elementary

operations). This gives us the system:
3x = =7
3y - 20
3; =-13.

Now we arc going to use the third equ

ding the second

Finally, dividing the first equation by 3 (or multiplying it by 1/3). divi
the promised

;?(c)l]uauon by —3. and dividing the third equation by 3, we have our system in
m as

which tells us the solution.



1.1 Systems of Linear Equations

You mig i :
. Olc,ht notice that we only really need to keep track of the coefficients as we
ur system. To keep track of them, we will indicate a system such as

x—y+z=0
2x =3y +4z=-2
—2x—-y+z=7
by the following array of numbers:
1 -1 1, 0
2 -3 41 2
-2 -1 1 . 7

This array is called the augmented matrix for the system. The entries appearing to the
left of the dgshed vertical line are the coefficients of the variables as they appear in the
system. This part of the augmented matrix is called the coefficient matrix of the system.
The numbers to the right of the dashed vertical line are the constants on the right-hand
side of the system as they appear in the system. In general, the augmented matrix for
the system

anx; +apxy+ -t an, = by

a2 x| + apxs + -+ amx, = b

A1 X+ ap2X2 + -t QupXn = bm

1S
—
J ’— aj| apn AT : b|
an) ann R 2 X ‘: bg
\ : .
5 Ay dm2 oo+ Hmn : bm

 I—

The portion of the augmented matrix to the left of the dashed line with entries a;; is the

coefficient matrix of the system.
Corresponding to the elementary operations for systems of equations are elementary
row operations that we perform on the augmented matrix for a lincar system. These are

as follows.
s
1. Interchange two rows.”
2. Multiply a row by a nonzero number.

3. Replace a row by itself plus a multiple of another row.

I —
R . = -

= A line of numbers going 4cross the m
the matrix is called a column.

atrix from left to right is cailed a row: a line of numbers going down
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As our first formal example of this section, we are going to redo the w

ork we dig,
solving the system
X=y+z=0
2x =3y +4z7=-2
—2x — y +z7=17
with augmented matrices.
Solve the system:
X=y+z=0
2x =3y +4z7=-2
2 -y+4z=7.

Our work will consist of four steps. In the first step,
operations to make all other entries in the first colum
use the second row to make all other entries
we shall use the third row to make al] othere
step. we shall make the nonzero entries in th
be able to read off our solution. To aid you i
R> — 2R, next to the second row indicates t
plus —2 times the first row: an expression
we are dividing this row by 3. Arrows are

we shall use the first row and row
n zero. In the second step, we shall
in the second column zero. In the third step,
ntries in the third column zero, In the fourth
e coefficient matrix 1 at which point we will
n following the Steps, an expression such as
hat we are replacing the second row by itself
such as R, /3 next to the first row indicates
1sed to indicate the progression of our steps.

Fr -1 1 9
! o34 E =2 | Ry—-2R,
{_ =1L 7 | Ry+2R,
e Ry — R,
-0 -1 21
0 =3 3 1 7] Ry-3R
I 0 =1 ' 27 3R -R& 30 01 =77 RJ3
S0 =1 2 2 | 3R 2R > | 0 =3 0 ! 20 | —R3
0 0 -3 . 13 0 .0 =3 . 13 ] —Rs/3
{1 001 -7/3
10 1 0 ' -20/
Lo 0 1 . —13/3
| ¢
The solution is then x = —=7/% v = =20/3. 2 = —13/3.
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In Gauss-Jordan elimination, we use elementary row operations on the augmented

matrix of the system to transform it so that the final coefficient matrix has a form called
reduced row-echelon form with the following properties. 2

1. Any rows of zeros (called zero rows) appear at the bottom.

. The first nonzero entry of a nonzero row is 1 (called a leading 1).

The leading 1 of a nonzero row appears to the right of the leading 1 of any
preceding row.

4. All the other entries of a column containing a leading 1 are zero.

Looking back at Example 1, you will see that the coefficient matrix in our final
augmented matrix is in reduced row-echelon form. Once we have the coefficient matrix

in reduced row-echelon form, the solutions to the system are easily determined.
Let us do some more examples.

EXAMPLE 2 Solve the system:

X+ X —x34+2x =1
X|+ x>+ Xy =
X)+2x, —4x3 =1

2.’(‘| + x> + 2X3 + 5)64 = 1.

b

Solution  We try to proceed as we did in Example 1. Notice, however, that we will have to modify

our approach here. The symbol R, < Rj after the first step is used to indicate that we
are interchanging the sccond and third rows.

L =12 01
101 2| R-R
12 4 0 | Ry — R,
21 25 01| Ry-2R
o =2 ]
0 0 1 =1 ' 1 { R < Ry
Tlo o1 -3 =200
0 -1 4 1
11 -1 2, 1] R —R
1 -3 -2 ' 0
- 0 1 -1
0 -1 4 1 . =1 | Ry+Rs
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1 O 2 4 : 1 Rl - 2R3 1 0 0
01 =3 =2 0| R +3R, 0 6 _
—> | 1 O | 1
g =S5
| -1 .I
o0 1 —1 . —1 Ry — Ry 0000:1
We now have the coefficient matrix in reduced row-echelon form b2
matrix represents the system - Our fing] 4,
gm(’,nted
X] + 6)(4 = —1
Xy —5x4 =3
X3 — x4 = 1
0= -2,
which is equivalent to our original system. Since this last system contaj
equation 0 = —2, it has no solutions. Hence our original system has no So]I:s the fajs,
10ns, °

EXAMPLE 3  Solve the system:
2x+3y—2z=3
—x—y+3z=0
xX+2y+2z=3
y+ 5z =3.

We first reduce the augmented matrix for this system so that its coefficient matrix is in

Solution
reduced row-echelon form.
2 3 —1 7 37
-1 —1 3 0 2R> + R,
12 3 | 2R~ R,
0 I .3
2 3 —-1 | 3 R, — 3R>
01 5 '3
o1 s 3| Ri-k
0 1 5 13 Rs — R2
o -8 1 -3
2 0 —16 ' —6 R /2 ! ! ;
o1 5 3 o1 3 .
| —> 1
“loo ol o o0 0
! o 0
0 0 0O 0 0 0
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This final aug i
gmented matrix represents the equivalent system:

x —8z=-3
y+35z=3
0=0
0=0.

Solving the fir i
st two equation i '
have the form q s for x and y in terms of z, we can say that our solutions

x = -3+ 8z, _\7:3—51

where z is a ; :
Z ny real number. In particular, we have infinitely many solutions in this

example. ,(A")f choice of z gives us a solution. If z = 0, wehavex = =3, y=2327 0
as a solution: if z = 1, wehavex =5,y = =2,z =1lasa solution; if z = +/ 17, we

have x = .—3 + 8417, y = 3= 517,z = \/ﬁ as a solution; and so on.) In a case

§uch as thlS'. we refer to z as the free variable and x and y as the dependent variables

in our sglutlons. When specifying our solutions to systems like this. we will follow the
convention of using variables that correspond to Jeading ones as dependent variables and
those that do not as free variables. It is not necessary to specify our solutions this way,
however. For instance, in this example we could solve for z in terms of x, obtaining

ool W

+

oo | =

.

and
x 3 5 9
3 5:=3-5(z+z)=-%"Fg
> (8 8) g 73

giving us the lutions with x as the free variable and y and z as the dependent variables. ®

Solve the systent.
dx; — 8x2 — X3 4 x4+ 3Xs = 0
Sx; — 10x2 — X3 + 2xy + Ixs = 0

Ix) — 6x>» — X3 + X4 t+ 2Xs = 0.

We again begin by reducing (he augmented matrix 0 the point where ts Coetie
= = =

matrix is in reduced row-echelon form:

4 8 -1 |3 || 0
5 -10 -1 2 3 'I 0 4R3~5R1
2 0 4R - 3R,

_6 —1 1

22
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4 -8 —1 1 3 :’ 0 R, + R,
-1 0 0 1 3 -3 ' 0
0 0 =1 1 =1 .10 g R,
4 -8 0 4 0 I: 0 R, /4
— 0 0O 1 3 -3 ' 0
0 00 4 —4 1 0| Ry
1 =2 0 1 0 :' 0 R — R,
— 0 0 1 -3 0 R, — 3R,
0 00 1 -1 .0
1 =2 0 O . 0
—~|l0 010 010
0 00 1 —1 10
We now have arrived at the equivalent system
X} —2x;+x5=0
x3=0
X4 — x5 = 0,
which has solutions
X)p =2x; —xs,  x3 =0, X4 = X5
with x2 and xs as the free variables and x| and x, as the dependent variables. 0

Systems of equations that have solutions such as those in Examples 1, 3, and 4 are
called consistent systems; those that do not have solutions as occurred in Example 2 are
called inconsistent systems. Notice that an inconsistent system is easily recognized once
the coefficient matrix of its augmented matrix is put in reduced row-echelon form: There
will be a row with zeros in the coefficient matrix with nonzero entry in the right-han(:
entry of this row. If we do not have this, the system is consistent. Consistent .SySW"l‘][
break down into two types. Once the coefficient matrix of the augmented matrix I pis
in reduced row-echelon form, the number of nonzero rows in the coefﬁcie.nt mart]rzris
always less than or equal to the number of columns of the coefficient matrix- (T c m’
there will never be more nonzero rows than columns when the coefficient maﬂ:/’; than
reduced row-echelon form. Why is this the case?) If there are fewer nonzero ;‘;]u[iong
columns, as we had in Examples 3 and 4, the system will have infinitely man)’ve exactly
If we have as many nonzero rows as columns, as occurred in Example 1. W€ l,:athat every
one solution. Recall that it was mentioned at the beginning of this Secnogolutions, of
system of linear equations either has exactly one solution, infinitely many s
no solutions. Now we can see why this is true.
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A sys inad .
ystem of linear equations that can be written in the form
anxy+apxa+---+apux, =0
a2 X1 +anxs + - +ayx, =0 a1

Am1 X1 + QmaXy + - + App Xy = 0

1 C"‘.“ed ahomogeneous system. The system of equations in Example 4 is homogeneous.
Notice that

x1 =0, X, =0, o x, =0

is a solution to the homogeneous system in Equations (1). This is called the trivial
sqlqtion of the homogeneous system. Because homogeneous systems always have a
trivial solution, they are never inconsistent systems. Homogeneous systems will occur
frequently in our future work and we will often be interested in whether such a system
has solutions other than the trivial one, which we naturally call nontrivial solutions.
The system in Example 4 has nontrivial solutions. For instance, we would obtain one
(among the infinitely many such nontrivial solutions) by letting xo = 1 and x5 = 2, in
which case we have the nontrivial solution x; = 0, x2 = 1, x3 =0, x4 = 2, x5 = 2.
Actually, we can tell ahead of time that the system in Example 4 has nontrivial solutions.
Because this system has fewer equations than variables, the reduced row-echelon form of
the coefficient matrix will have fewer nonzero rows than columns and hence must have
infinitely many solutions (only one of which is the trivial solution) and consequently must
have infinitely many nontrivial solutions. This reasoning applies to any homogeneous
system with fewer equations than variables, and hence we have the following theorem.

A homogeneous systen: of m linear equations in n variables with m < n has infinitely
many nontrivial sofutions.
Of course, if a homogencous system has at least as many equations as variables such

as the systems

4 2x+v+2=0
x+y+:=0 , "
X—z22y—2=
v—y—2z=0 and ’
' 3x—=v=0
2x+v+:=0 A ;
X —3y—z=

we would have to do some work toward solving these systems before we would be able
to see whether they have nontrivial solutions. We shall do this for the second system a
bit later.

Gaussian elimination, which is another systematic approach for solving linear
systems. is similar to the approach we have been using but does not require that all the
o}her entries of the column containing a leading 1 be zero. That is. it uses row operations

to transform the augmented matrix so that the coefficient matrix has the following form:

1. Any zero rows appear at the bottom.
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zero entry of a nonzero row is 1.
n

2. The first 'HO f 2 nonzero row appears to the right of the leading "
3. The leading ! © any

oW
receding 10 ' _
’ echelon form for the coefficient matriy_ In

: row . . . ' eSSEn
Such a form 15 Cal]:edzzro) entries above the lead'mg Is in Gaussjan e]‘minatio ;e, We g,
not eliminate (mf;] zan be applied to the system in Example 1.  Hey ;
this approac |
how p 1o
2 -3 4 : -2 R, — 2R,
2 —1 1+ 7] Ri+2R
[ -1 1, 07
— -1 2 ! -2
0 =3 31 7] Ri-3R,
I -1 1. 0 [T -1 0
1o -1 20 2| -R - 2
0 0 -3 13] -Ry/3 [0 0 ' 133

We now have the coefficient matrix in a row-echelon form and use this result to fing (he
solutions. The third row tells us

13

3

The values of the remaining variables are found by a process called back substitution,
From the second row. we have the equation

from which we can find y:

Finally, the iy '
ally. the firg( roy represents the €quation
A =Vv+:=0(
from whijch We can fing y-

20
-"+\—E:O
33
7
V= ——
3

S T
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On the plus sic ;
s side, Gaussian eliminati .
side thz work 1 (:aussx.an climination requires fewer row operations. But on the minus
SuSalves haviné {oogletlll“?; messy when doing the back substitutions. Often, we find
: $ cal with fractions even i figin: : i /e integers
The back s en if our original system involves only integers.

ubstitutions : S

el o tlt‘utllox?s are also cumbersome to do when dealing with systems that have
' 1Ny solutions. Try the Gaussian elimination procedure in Example 3 or 4 if

you would like to see how it goes.

solul?obn‘sl :‘;lz Vl\/iiez;llgte‘nd to‘ use gatlss-Jordan e-liminat'\on when we hgve to find the

system 1n this text. Sometimes. however, we will not have to
completely solve a system and will use Gaussian climination since it will involve less
work. The next example illustrates an instance of this. In fact, in this example we will

not av : . . s , : :
even have to bother completing Gaussian elimination by making the leading entries
one.

Determine the values of u, b, and ¢ so that the system
X—v+2z=a
2x+yv—z=b

x+2y—-3z=c

has solutions.

We begin doing row operations as follows.

I -1 2 . a 1 =1 2 a
> 1 1 b | R=2R > |0 3 =5 b-2
j 2 =3 . ¢ Ry — R, 0 3 =5 . c¢—u R:— R,
1 -1 2 a
~10 3 -5 b-2a
0 0 0 . a—-b+c

Now we can see that this system has solutions if and only it a.b. and ¢ satisty the

equation

a—b+c=0.

Another place where we will sometimes use an abbreviated version of Gaussian
elimination is when we are trying to see if ahomogeneous system has nontrivial solutions.

Determine if the system

2x+y+:z=0

v —2y —2
Ix—yv=

4y —3v—2=0

has nontrivial solutions.
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Perform row operations:

N
—

2 1 1
1 -2 -1
3 -1 0

4 -3 -1 Rs~r,

N
&
[
W
G
o
I
)
[
w
© o o o

R4\R7

S O O

0 0 0

0 0 0 0

It is now apparent that this system has nontrivial solutions. In fact, yoy should p,
to see this after the first set of row operations. € able
®

It is not difficult to write computer programs for solving systems of linear equg;
using the Gauss-Jordan or Gaussian elimination methods. Thus it is not surpn'sing'tc})lnS
there are computer software packages for solving systems of linear systems.3 Marle ?SI
one among several available mathematical software packages that can be used to fing
the solutions of linear systems of equations.

In the preface we mentioned that we will use Maple as our accompanying software
package within this text. The use of Maple is at the discretion of your instructor Some
may use it, others may prefer to use a different software package, and yet others may
choose to not use any such package (and give an excellent and complete course). For
those intructors who wish to use Maple—or for students who are independently interested
in gaining some knowledge of its capabilities—we will include occasional remarks about
how to use it when we deem it appropriate. On many other occasions we will not include
any remarks and will simply provide some exercises asking you to use indicated Maple
commands. In these cases, you are expected to louk up the command in the Help menu
under Topic Search to see how to use it. This is one place where we will include a few
remarks to get you started. For those who wish to use the software packages Mathemtica
or MATLAB, the accompanying Technology Resource Manual contains corresponding
commands for these software packages.

Here we explain how to use Maple to find solutions to linear systems. One way t0
do this is to use the linsolve command. To use this command in a Maple worksheet. you
will first have to load Maple's linear algebra package by typing

with(linalg) ;
at the command prompt > and then hitting the enter key. After doing this. you

a list of Maple’s linear algebra commands. To solve the system in Example 1. fir
the coefficient matrix of the system by typing

st e ter

A:= matrix([[1,-1,1],(2,-3,4],([-2,-1,111);

_ .

- . ‘mina:ion:

3 ‘ anssian ellm]n
Often these packages employ methods that are more efficient than Gauss-Jordan or Gaussi

but we will not concern ourselves with thesc issues in this text.
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?l the;oml.nand prompt and then hitting the enter key. (The symbol := is used in Maple
1?; indicating that we .are defining A to be the coefficient matrix we type on the right.)
e constants on the right-hand side of the system are typed and entered as

b:=vector([0,-2,7]);
at the command prompt. Finally, type and enter

linsolve (A, Db) ;
at the commmand prompt and Maple will give us the solution as

-7 =20 -137
37373 |
Doing the same set of steps for the system in Example 2 results in no output, indicating
there is no solution. Doing them in Example 3 yields the output

[-3+8_ 1.3 —-5__71.__H],

which is Maple’s way of indicating our solutions in Example 3 with , in place of z. In
Example 4. these steps yield

'[2_r1 — ., 1,0,_t._nl
EXERCISES 1.1
Solve the systems of equations in Exercises 1-16. 7. 3 4+x;—3x3—x; =6
1. r+yv—2=0 2. 2x+yv—2z= N+n-2u+a=0
2x+3v—2:=6 2y —v—=2:=0 3x; +20 — 43+ =5
VA 2v+22=10 r+2v—42=0 X420 = 3n+ 3 =4
8 X +v—uay42v =1
3 2x43y—4:=3 4 wfy-2o=3 Bt -nou=-l
v 43y —2z =3 x—8v—ldz =14 X420 4+ 20y = 1
4y 4+ 6y —2: =17 R O 20 F 20 F vy gy =2
9. X +2x =3y +4dy =2
5. v+ 3 =0 6. 2v+3v+:o=+4 2x; — 4+ 6xy =Sy =10
D4y —z=0 ¥+ 9y —4d: = X; —6x> +9x3 —9xy =8
4u +,\'7:5::O v—y+22=3 g —2ntdn -y =12

+ Software packages such as Maple often will have several ways of doing things. This is the case for solving
wvstems of linear equations. One variantis to enter b as a matrix with one column by typing and entering

ci=macrix: ((0], [-21, (711}

When we then type and enter

linsclve{R,b};
our solution is given in column form. Another way is to use Maple’s solve command for solving equations
and systems of equations. (With this approach it is not necessary to load Maple's linear algebra package.) To
do it this way for the system in Example 1. we type and enter

soLvel({x-v+Z-= XX -33Fyed*z=-2  -2FX-V+Z=T ), (K, 7,40

4 ;b 3 Z=-«
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10. x—xz+x3+xs—x5s=0 22. 9x; + X~ /5,
2_x,-—,r2+2.r3—x4+3xs=0 2-¥1+(sin1)x + ?=0
: g 2x s =0 3 2+ 2x, =
2,\] —-.lz—...,\4+-15 = -38X| —ex3 +(]n2)
X4 =
_\'1+x2‘—x3—/\'4+2):5=0 23. A‘—)I+7_~0 ! :
2x) + 4x3 + x4 + 3xs =0 . 2x + Y+ 25 0
L =
1. x+2y+:=-2 12. 2x—4y+6z=2 3x =5y +3: =0
21_+2."._22_=3 —3x+6)‘—9z=3 24. x—|—y+2z_0
13. x—2y=2 14. 2x+3y =5 ) 3x—y-22___0
x+8y=—4 2x +y =2 2X—2y—4z=0
2x+y=1 x —2y =1 X+3y+6z=0
15. 2X) — X — X3+ X4 + x5 = 0 25. We have seen that homogeneous lin
. : ; e
X1 — X2+ X3+ 2x4 — 305 = 0 fewer eqluaponsthan variableg a]WaySalr] SYste Wi
many solutions. What possih:fis: Veinfy;
() —2x) —x3— X3+ 2x5 =0 . Possibilitieg - ey
3x) 2 — X3 — X4 + 2x5 homoge_neous linear systemg Withcglvans Or noy,
16. xX]—=3x+x3 — x5 —x5=1 than variabtes? Explain your answer. er €Quatiop
2x) 4+ X2 — x3 4+ 2x4 + x5 =2 26. Give an example of a System of linear equygigp
—X) 4+ 3x2 — x3 — 2x4 — x5 = 3 n;o;e leiqualvtlons than variables that illustrates eachlg;
the following
2x)+ X3 — X3 —x3—x5=6 has infini lcPOS€1b1]1[1e$_ Has exactly one sojy i,
as infinitely many solutions, and hag no solution,
Determine conditions on a. b. and ¢ so that the systems 27. DeSCTi‘bC gréphica”y the possible solutions t0 & sys-
of equations in Exercises 17 and 18 have solutions. tem of two linear equations in x, v, and -,
17. 2x — v+ 3z =g 18. x+2y—z=ua 28. Describe graphical]y the'poss'ible solutions to g sys-
X —3y4+2:=b St ¥ =27 =B tem of three linear equations in . v,and .
x+2y+zc=c 2x+y—-3:=c¢ Use Mapic or another appropriate software package to
solve the systems of equations in Exercises 29-3). If
Determine conditions on «, b. ¢. and d so that the Sys- you are using Mathematica or MATLAB, see the iech-
tems of equations in Exercises 19 and 20 have solutions. nology Resource Manual for appropriate commands.
19. \4o4+x—x=a (To become mo.re comfortable v'vith thg sott.\‘varexpacki;
. . ; S ractice using
) . . ) . age you are using, you may wish to p o
Moot xa=h (o solve some of the smaller systems in Exercises
Xi+Xx24+x34x3=c¢ before doing these.) . )
X=X+ x3+xy=d 29. 7x) — 3xy + 503 —8xt s l}
. - Tis ==
20. X — X2+ a3 40y =g 12x) + 4x; — 1643 — o +8 47
- — 05 &=
X+ x — 2_\.3 + 3y, =bh —22x) — 8x> + 25x3 — 16x4 5 _6
— Xs — V7
M1 =20 430 = 2 = ¢ 504, — 40x; + 1181 — 370 2
) _ A=
2x2 = 3x3+ 2y, =d 30. 46.x, + 82x2 — 26x3 + o %1
o 60x, + 101 436 T8 77
Determine if the homogeneous systems of linear equa- Sxs + 33503 1 437x = 4126
tions in Exercises 21-24 have nontrivial solutions. You —437x) — 735x2 l 250l =T
do not have to solve the systems. 299, + 379x; — 63143 198311 = 4857
. 2x3 — 75 66
21. Ov —2v 4+ 172 =0 1863x, + 2804x2 +6 986314 = 41
2 _ 461x3 —

13x + 81y =272 =0 17481, + 22912
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