/

62x T g2y, + 2683 — 4x,
+ 320 + 34'\'0 - 2.\'7 - 4.\'3 =0

93] +.]2'3_\'3 + 67x3 — 36y
" 4 1065 + 515 + 31y7 — 188x5 = 0

_589x, — 779x> — 30333 + 647x,y
— 330x5 — 323x6 — 256.x7 — 246x3 =0
4031 + 533x, + 365x3 — 2493y
+263x5 + 50x6 + 981.x7 4+ 1345x3 = 0
2511y, + 332102 + 1711x3 — 26364,
4+ 2358x5 + 1357x¢ + 1457x7 — 23230y = 0
2356x, + 311632 + 2038x3 — 6828,
+ 2418x5 + 1936x6 + 3596x7 — 35743 = 0
32,330 + 330+ 12.1x3 4+ 2.2x4
4+ 45.1x5 + 7. 7x¢ + 12,15
+352xg+ 1lxg =33
3x) 4 3xy + 15.8x3 —dxy
+ 61.4x5 + 82x4 + Sx7
+21.2x5 + 5.8x9g = —0.6

3L

(continued)
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—3.3.\'1 A 3.3.\'3 - 16.1.\'3 + |.8.\'4
= 6"\5 - 9.7.\'6 — l()]\7

—282xg — 4.2y =173
3y 4 3x; + 150,
+ 56.3x5 + 8.4x¢ + 13.7x7
+30.3x5 +9.8xyg = =99
301+ 300 4 s + 30y
4+ 37x5 + 19.5x¢ + 14x7
+ 30.5xg — 7.5xg = —17
=3x; = 3xy — Ilxy —3xy
—4].1xs — 3.8x5 — 5.9x7
— 34.1xg + 16.4x9 = 38.3
—22x3 +52xs —4.2x¢
— 11.6x7 — 1.4xg + 31.2x9 = 48.2
42x, + 420 +19.4x; — 3.2xy
+ 76.4x5 — 0.2x¢ + 3.4x7
+ 35.8x5 — 9.6x9g = —23.2

1.2 MATRICES AND MATRIX OPERATIONS

In the previous section we introduced augmented matrices for systems of linear equations
as a convenient way of representing these systems. This is one of many uses of matrices.
In this section we will look at matrices from a general point of view.

We should be explicit about exactly what a matrix is, so let us begin with a definition.
A matrix is a rectangular array of objects called the entries of the matrix. (For us, the
objects will be numbers, but they do not have to be. For example, we could have matrices
whose entries are automobiles or members of amarching band.) We write matrices down
by enclosing their entries within brackets (some use parentheses instead) and, if we wish
to give a matrix a name, we will do so by using capital letters such as A. B. or C. Here
are some examples of matrices:

12 3
,-\:[ ] j\ B=[-7 4 4 0 3],
45 6

0 0 -2 = 8 ]
-1 ~1 12 38 In2
C= D=
/2 I -1
4 V2. -7 09 -391/629 |
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Augmented matrices of systems'of !in_ear €quationg have these ¢
dashed line. In fact, the dasheq line is mc]uded.mere]y 35 a cony OI_Tns if "
guish the left- and righ;-hapd sides of the €quations, If 4 Matriy En‘ence fo delete
across) and n columns (which go up a::d down), we say the siZe( as m rows( d
matrix is (or are) 1 x n (read “m by n”), Thus, for the Matrice, ‘uOr d{mensiowhi(: ;
matrix, Bisal x Smatrix., Cisa4 x 1 matrix, and p i a4 x 4J SIg.We“»A ins)('ffhe
as B that has one row is called a row matrix or row vector- , mag’iitls‘lx. matsr;l i
u

one column is called a column matrix or column vectq,. Matrige, i
a

number of rows as columns (that is, n x , matrices) are calleq Squa
re

matrix D is an example of a square matrix.
As you would expect, we consider two matrices A and g 10 be equy, "
> Wrj

if they have the same size and entries. For example, Mitten 4

-1 2 =1 8/4
112 || 2 3.4
while
-1 2 B 5 2 . I
an
112 112 2 [#[1 2]

The general form of an m X n matrix A is

aj ajz apz - dip
a arx a3 ... ajy,

A= Grooaxnoazy . gy (1)
Ami Am2  dys HRY 7 J

Ist subscript i of an entry a,; is the row in which the
bscript / is the column in which it appears. To save
matrix such as this by simply writing

Notice that in this notation the h
€niry appears and the second sy
writing, we shal] often indicate a

A = [a;;).
If we wish to single out the iIj-entry of a matrix A, we will write
ent;, (A).
For instance_ jf B is the matrix
—] 2 1
B = 5 4 -9
3 -4 7

then

éntz3(B) = —9.
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If A= [tl,"] 1S an .
J h X n matrix, the entri
entries of A he . trix, t ntries a,, aay, ..., a,, are called the di
I T matrix B has diagonal entries —1, 4,7 o e lagonal

We will use the s
§ ymbol R to denot i
. . ) e the s
matrices with entries from R wil] be denote}(;e set of real numbers. The set of m x

My, Ry = || 4
X% | ayy,app,ax, a0 € R
azy ax

Thus, for example, in set notation

e W\:ﬁzgsgfe?yc%gr)ﬂ;zi t:Wo-d¥mens?onal vectors ‘in two-dimensional space (which
e uiil denots by_IR3) " rt:y(.e—dlmensmnaI vectors in three-dimensional space (which
e o previous courses. Onfe stan@ard notation for indicating such
rs b ) 0 e pairs (a,b) for t\fvo-dlmenswnal vectors and ordered triples
a, 0, ree dimensional vectors. Notice that these ordered pairs and triples are in
fact row matpces or row vectors. However, we will be notationally better off if we use
| column matnces for two- and three-dimensional vectors. We also will identify the set
of two-dimensional vectors with R? and the set of three-dimensional vectors with R*;in

other words,

5 a
R° =M (R) = b la,beR

and

3 \
R =A[zy[(R)= b la,b,CER
C

Iy, the setof n x 1 column matrices M, .| (R) will be denoted
R” as vectors in R" or n-dimensional vectors.

We next turn our attention to the “arithmetic" of matrices beginning with the op-
erations of addition and a multiplication by numbers called scalar multiplication.b If
A and B are matrices of the same size, we add A and B by adding their corresponding

in this book. More genera
R" and we will refer to the elements of

s —
3 In set notation. the vertical bar, |, deno
symbol € denotes “element of " (or “member of

dajl ag
| ajy, dip.ax.dn € Jitd
a) an

is as “the set of matrices
I: ayp o ap :|

tes “such that” (some use a colon. :, instead of a vertical bar) and the
"), One way of reading

azy a2
. a»> are elements of the set of real numbers.”

such that ayy. @12, @2i
ones you already know for vectors in R* or R to matrices in

6 These two operations are extensions of the

general.
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entries; that is, if
A =[a;j] and B = 5,1

are matrices in M,, x, (R), the sum of A and B is the m x Matriy

For instance, if

1 2 8 o
A= 3 4 and B = 10 11
5 6 12 13
then
1+8 249 9 11
A+B=| 3410 4+11 [=]| 13 15
5412 6+13 17 19

Note that we have only defined sums of matrices of the same size. The sum of matri
. : . 1
of different sizes is undefined. For example, the sum ces

[_32 ]5]+[3 0 —2]

is undefined. If ¢ is a real number (which we call a scalar in this setting) and 4 = [a;]
is an /m x n matrix, the scalar product cA is the 7,1 x n matrix obtained by multiplying

c times each entry of A:

512 5.1 5.2 5 10
3 4| | 5.3 5.4 |15 20|

olving addition a0

For example,

The following theorem lists some elementary properties inv

scalar multiplication of matrices.

If A, B, and C are matrices of the same size and if ¢ and d are scalars, the
1. A+ B = B+ A (commutative law of addition).
2. A+ (B+C)=(A+ B)+ C (associative law of addition).
3. c(dA) = (cd)A.

c(A+ B) =cA + ¢B.

(c+d)A=cA+dA.

TN
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Proof We prove t alits )
f P hese equalities by showing that the matrices on each side have the same

entries. Let us , . ,
loft a t_lfg prove parts (1) and (4) here. The proofs of the remaining parts will be
S exercises (Exercise 24). For notational purposes, we set

A= [a,-j] and B = [b,j]
Part (1) follows since
emij(A + B) = dajj + b,‘j. = b,'j +a,-j = entfj(B + A).
To obtain part (4),
entif(C(A + B)) = C(aij + b,‘j) = Ca;; +Cb,'j = ent,-j(cA + CB)  J

One spema.l type of matrix is the set of zero matrices. The m x n zero matrix,
denoted O,, ., is the m x n matrix that has all of its entries zero. For example,

[0 0 0]
0 0 000

O1x2 = and Oy3 =
0 0 Tl 0 000
_OOOJ

Notice that if A is an m x n matrix, then:

1. A+ Omxn = A.
2. 0-4= Omxn-
We often will indicate a zero matrix by simply writing O. (To avoid confusion with the

number zero, we put this in boldface print in this book.) For instance, we might write

the first property as A + O = A. The second property could be written as 0 - A = 0.
The negative of a matrix A = [aij], denoted —A, is the matrix whose entries are

the negatives of those of A:

r |
| —A = [~ajj].
L

Notice that
“A=(-HA and A+ (-A)=0.

Subtraction of matrices A and B of the same size can be defined in terms of adding the

negative of B:

rA—B:A~i~(—B).

|

Of course. notice that A — B could also be found by subtracting the entries of B from

the corresponding entries of A.
Up to this point. all of the operations we have introduced on matrices should seem

relatively natural. Our final operation will be matrix multiplication, which upon first
glance may not seem to be the natural way to multiply matrices. However, the manner of
multiplying matrices you are about to see is the one that we will need as we use matrix

multiplication in our future work.
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) . lication: Suppose that A =
w we do matnx multip .
; matrix. The product of A and B is deﬁJn];dS :]E,h X p
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Mat,.

he
”2)(1

(5]
™

Here iS ho
il isann X

and B = [bi
matrix
AB = [pij]

where

n
pij = aibij t aizba; + aisbsj &+ Ginbnj = Za,-kbkj
k=1

hl<i<mand]l < j = /[ltheij-entry of 4B js 1,
ound

In other words, for eac ' .
f row i of A times 1ts corresponding entry of colump ;
D j of B gy

multiplying each entry 0
then summing these products.
le illustrating our matrix multiplication procedure.

Here is an examp

EXAMPLE 1 Find the product AB for
1 2 5 6
A= and B = _
7 8

The product AB is

Solution
1 2 5 6
AB =
3 4 7 8
2

_[1-5+2-7 1-6+2-8 (19
T 143 50 | @

18}

o

3.5+4-7 3:-6+4-8

X l(Zinge you practice tpis sum of row entries times column entries a few times, you
should find yourself getting the hang of it.7 Let us do another example of matrix multi-

plication.
EXAMPLE 2 Find the product C D for
-1 2 -3 =2
C=| 0 =1 | and D=| =3 4
4 2 — P

e vector formed
Jy in Chapter ¥

7 .
You might find it conveni
Sl f P A wmi l;((:n\?:cl::)ern; to note that the 7 -entry of A B is much like the dot product of th
ormed by column j of B. We will discuss dot products more ]




Solution

THEOREM 1.3

Proof

1.2 Matrices and Matrix Operations 23

-1 2 -3 I -2
CD = 0 —1 1 -3 4
L 4 2 - I
CD-14+2=3) =31 (C1y=2)42.4-3 . ~10 7
= 0-1—-1(=3)+1.1 0(=2)—1-44+1-1 | = 4 -3
L 4 14+2(=3)—1.4 4(-2)+2-4-1.1 -3 -1

_ o
Notice that for the product A B of two matrices A and B to be defined, it is necessary

the number of columns of A be the same as the number of rows of B. If this is not
the case, th.e product is not defined. For instance, the product DC for the matrices in
Example 2 is not defined. In particular, C D is not the same as DC. This is an illustration
of the fact that marrix multiplication is not commutative; thatis, A B is not in general the
same as B A for matrices A and B. Sometimes these products are not the same because
one 1s defined while the other is not, as the matrices C and D illustrate. But even if both
products are defined. it is often the case that they are not the same. If you compute the
product BA for the matrices in Example 1, you will find (try it)

that

23 34
31 46

BA =

which is not the same as AB.% In the case when AB = BA for two matrices A and B,
we sayv A and B commute.

While matrix multiplication is not commutative. some properties that you are used

to having for multiplication of numbers do carry over to matrices when the products are
defined.

Provided that the indicated sums and products are defined, the following properties hold
where A. . and ¢ are matrices and « is a scalar.

1. A(BC) = (AB)C (associative law of multiplication)

o

AB + C) = AB + AC (left-hand distributive law)
3. (A + B)C = AC + BC (right-hand distributive law)
4. d(AB)=(dA)B = A(dB)

We will prove the first two parts here and leave proofs of the remaining parts as exercises
(Exercise 25). For notational purposes. suppose

A = la;;). B = [hi;]. and € =1l

8 This is not the Airst time you have encountered an example of a noncommutative o.per;umn. Compowngn
of functions is noncommutative. The cross product of two three-dimensional vectors is another example of a
noncommutative operation,
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To prove part (1), we also have to introduce Some Notatiop for ¢ e si
Suppose A is an m x n matrix, B is an n x |/ matrix, anq ¢ is 12e5 op

' an J '8
A(BC)and (AB)C are m x h matrices. ( Why?) To see that ¢ ese prodx h matﬁxand ¢
we work out the ij-entry of each. For A(BC), this is Uctg are thé BDth

k=1

k:]

n n /
n
enti; (A(BC)) = 3 " ayent; (BC) — D au 2 bige,, | - » /
k=] g=1 Zalkbqu(‘q')
‘, .

Carrying out the same steps for (A B)C,
!

/ n
ent;; (AB)C)) = Zentiq (AB)c,; = [; (Z_; aikbkq) Cqj = ZI (i ‘

g=1 g9=] =1 alkbchqj
Since the summations over k and g are Interchangeable, e See that the ;.
A(BC) and (AB)C are the same and hence A(BC) = (AB) J~Cntrieg oo

I'matrjc
Aisanm x p matrix and B and Caren x matrices, Both A(B + C) an;;guppme
are m x [ matrices. We have +HAC

CMG(AB +0) = 3" a(en,,; (5 4 ) =" aub, + o)
k=1 k=]

n
= E ((I,'k])kj +{"/}('ij)

k=]
and

Nij(AB 4 AC) = M (AB) +ent;;Ac) — D auby + D auey
k=1 k=1

n
= 2 (”ikbkj +(l,'/\v(‘,(-j).
k

=

Thus A(B TC)=4AB AC since they have the same entries.

O/xmA = O/X,, and AO”y/ = O,/
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o Lo 1 0 0
2= 0 and 1= 0 | 0
0 0 1

Idcngty‘ mz.\tnc.es play the role the number 1 plays for the real numbers with respect to
multiplication in the sense that

IhA=A and Al, = A

for agy m x n matrix A. (Convince yourself of these statements.)
ne S.) P - ~ . . . . . . g
. use (amgng many more to come) of matrix multiplication arises in connection
with systems of lincar equations. Given a system of linear equations

anxy+apxa+ -4 apx, = b

anxy +anxs + -+ ayux, = b

A X+ dyaXo + - T dpp¥n = b

we will let A denote the coefficient matrix of this system,

ayy dap o s A
A= (45} an e iy ‘
Uy dy2 0
X denote the column of variables,
X)
R}
X = .
X
and B denote the column,
/)1
bl
B =
b”l

Observe that our system can then be conveniently written as the matrix equation

- AX =B
For instance, the system
Qx—v+4:=1
x—=Tv+:=3

—x+2y+:=12
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would be written

-1 2 ] 2 ,

as a matrix equation. Notice that a homogeneous linear

. . Ystem take
O when written as a matrix equation. S0n the fo

UHAX§

EXERCISES 1.2

Write the matrix equationg as s

In Exercises 1-18, either perform the indicated opera-
Exercises 21 and 22.

. . ystems :
tions or state that the expression is undefined where A, of €quatiqp, i

B,C, D, E. and F are the matrices: N
b2 2 -l 21.[2 - 57] <N T
A= 3 —1 s B = -3 =2 y 4 5 —11 3 A3 - -3 J
2 -1 0 4 X4
2 2 —11 X 51
2 -1 0 I 22,1 0 -1 -5 ) =] -33
C = . D = . 5
1 5 3 -1 2 -3 0 2 12
23. Suppose that 4 and B are n x n matrices.
i =8 5 1 -1 4 a) Show that (A + B)* = A2+ AB 4+ BA 4 B2
E=|2 1 <1 |. F=|2 -3 ¢ b) Explain why (4 + B)? is not equal to
A® +2A3 + B in general.
1 ] 0 ] 0 1 S
24. Prove the following parts of Theorem 1.2,
.A+B 2.D-C 3. 2B a) Part (2)
4. -2 5.A—4B 6.3D +2C b) Part (3)
CD 8. DC 9. EF ¢) Part(5)
10. FE 11. AE 12. EA 25. Prove the following parts of Theorem 1.3.
B.(E+F)A 14.B(C+D) 15.34C a) Part (3)
. b) Part (4)
16. F(— 17. C* . A3 . " !
(=2B) 7. C 18. A Suppose A is an m x n matrix and B is ann X

Write the systems of equations in Exercises 19 and 20
in the matrix form AX = B.

26.

. . row of zeros.
matrix. Further, suppose that A has a ot

Does AB have a row of zeros? WW Orq’:v }\:\}lhv or
Does this also hold if B has a row of zeros= ™

19. 2x —y+4:=1 why not? i ann x!

X+yv—-:=4 27. Suppose A is an m x n matrix " ;ﬁmn of ze-

y+3:-=5 matrix. Further, suppose that B has ?f‘;vhy or why

e ros. Does A B have a column 0f Z€r0>- n of zeros’
rry=2 not? Does this also hold if A has acolum

20. X — 3 + Xy —Sxy =2
X+ X - X3+ Xy = ]

A —x2—X3+4+6x3=6

28.

Why or why not? ich
Give an example of two m
AB = O with A # O and

o Wh
atrices A and B for¥
B#0.

-
e

o



29, a) Suppose that A is the row vector
A:[ a a» ... ay, ]

and B isann x I matrix. View B as the column
of row vectors

where By, Ba. ..., B, are the rows of B. Show
that

AB=aBi+aBy+ - +q,B

ne

b) Use the result of part (a) to find AB for

-1 I 0
A=[-2 1 6] and B=| 2 1 |
4 -1 2
30. a) Suppose that B is the column vector
by
bg
B =
b,

and A is an m x n matrix. View A as the row of
column vectors

A:[‘A‘I ‘.3‘: A”]
where A|. Ay, .. .. A, are the columns cf A.
Show that
AB=h A + brAs + -+ b, A,

b) Use the result of part (a) to find A% for

3 02 -l 2
A= 0 3 5 and B=| -1
I 2 3

31. The trace of a square matrix A, denoted tr(A). is
the sum of the diagonal entries of A. Find tr(A) for

50 —4
A=| 2 =11 6
> 10 3

32. Prove the following where A and B are square ma-
trices of the same size and ¢ is a scalar.
a) tr(A + B) = tr(A) +tr(B)
b) tr(cA) = ¢ tr(A)
¢) tr(AB) =tr(BA)
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The matrix command introduced in the previous section
1S one way of entering matrices on a Maple worksheet.
Maple uses the evalm command along with +, -. *, &*,
and A to find sums. differences, scalar products, matrix
products. and matrix powers, respectively. For instance,
tofind A — B +4C + AB — C* where A, B, and C
are matrices already entered on a Maple worksheet, we
would type and enter

evalm(A-B+4*C+A&*B-CA3) ;

at the command prompt. A scalar product cA also may
be found with the scalarmul command by typing

scalarmul (A, c) ;

at the command prompt. Products of two or more ma-
trices can be found by using the multip/y command. For
Instance, typing and entering

multiply(B,A,C);

will give us the product BAC. Use these Maple com-
mands or appropriate commands in another suitable soft-
ware package (keep in mind that corresponding Math-
ematica and MATLAB commands can be found in the
Technology Resource Manual) to find the indicated ex-
pression (if possible) where

r4 =2 16 27 —11 7
9 43 9 -8 —1

A=| 34 20 =3 0 21
-5 4 4 7 41
L 12 -2 =2 3
Tl 10 0 07
222 0 0
B=| 0 3 3 3 0 and
0 0 4 4 4
L0 0 0 5 5

‘ 0 | 21 -1
=
I -1 -1 1 ]
L —1 0 2 2 =3
in Exercises 33—0.
33. A-2B 34. 5A +6C
35. ABC 36.CB+C
37. (A + B)’ 38.4A4+CB

39.4CA -5CB -2C 40. B> —4AB +24°




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

