Math 307 Exam 1, Fall 2022

Name:

Question	Points	Score
1	10	
2	9	
3	8	
4	4	
5	9	
6	9	
7	5	
Total:	54	

- You have 75 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work, unless otherwise indicated. You will get almost no credit for solutions that are not fully justified.
- You may not use notes or calculators on this exam.
- The back side of each page can be used as scratch work or for longer solutions. Please indicate clearly if your solution extends to the back side of a page.

- 1. (10 points) True/False questions. No justification necessary.
 - (a) True False If A is a 3×5 matrix and B is a 5×2 , then AB is a 2×3 matrix.
 - (b) True False Every invertible matrix has nonzero determinant.
 - (c) True False For every n we have $det(2I_n) = 2^n$.
 - (d) True False Any 2×2 matrix row reduces to one of the following four matrices:

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \text{ or } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(e) True False For any square matrices A and B,

$$(-A)B = A(-B) = -(AB).$$

- (f) True False The matrix $A + A^T$ is symmetric for any square matrix A.
- (g) True False A homogeneous system of equations $A\vec{x} = \vec{0}$ can be inconsistent.
- (h) True False There is a vector space V such that $1 \cdot v = \vec{0}$ for every vector v in V.
- (i) True False Multiplying a 3×3 matrix A on the left by

$$P_{1,2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

has the effect of exchanging rows 2 and 3 in the matrix A.

(j) True False If the vectors v_1, \ldots, v_n are a basis for V, then the vectors v_1, \ldots, v_n are linearly dependent and span V.

2. (9 points) Multiple choice. No justification is necessary.

Matrix								Is in RREF	Is NOT in RREF
	1	0	1	0	0	0			
	0	1	0	0	1	0			
	0	0	0	0	0	0			
	0	0	0	0	0	1			
	0	0	0	0	1	0			
	0	0	0	0	0	0			
	0	0	0	0	0	0			
	0	0	0	0	0	0			
Ì	1	0	0	0	1	1			
	0	1	0	0	1	1			
	0	0	1	0	1	1			
	0	0	0	1	1	1			
Í	1	0	1	0	0	0			
	0	0	0	1	1	0			
	0	0	0	0	0	1			
	0	0	0	0	0	1			
	1	0	1	0	1	0			
	0	1	0	1	0	1			
	0	0	0	0	0	0			
	0	0	0	0	0	0			
	-								

(a) Which of the following matrices are in RREF?

(b) If

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid P(a, b, c, d) \right\}$$

which of the following conditions P(a, b, c, d) make W a subspace of $M_{2\times 2}(\mathbb{R})$?

P(a, b, c, d)	Is a subspace	Is NOT a subspace
The zero matrix: $a = b = c = d = 0$		
Upper-triangular matrices: $c = 0$		
The matrices with determinant 1: $ad - bc = 1$		
The scalar matrices: $a = d$, and $b = c = 0$		

3. (8 points) Let

$$A = \begin{bmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}.$$

Compute A^{-1} , A^T , and A^2 .

4. (4 points) Solve the linear system of equations

$$x_1 - 3x_2 + 12x_3 - x_4 + 7x_5 = 3$$
$$x_2 + 2x_3 - x_5 = 2$$

5. (9 points) Let

$$v_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$

(a) Are the vectors v_1 and v_2 linearly independent or linearly dependent? Justify.

(b) Is the vector $\begin{bmatrix} 0\\0\\-8 \end{bmatrix}$ in the span of the vectors v_1 and v_2 ? Justify.

(c) Based on your findings in parts (a) and (b) do v_1 and v_2 form a basis for \mathbb{R}^3 ?

6. (9 points) Let

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 10 & 5 & 3 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

- (a) Find $\det(A)$, $\det(B)$, and $\det(C)$.
- (b) Find $det((A^T)^{-1})$. (c) Find $det((-A)B^2)$.

- 7. (5 points) Let A be a 3×3 matrix with det(A) = 10.
 - (a) Consider the linear system $A\vec{x} = \vec{b}$. Suppose

$$\det(A_1) = 7$$
, $\det(A_2) = 3$, and $\det(A_3) = 1$,

where A_i is the matrix obtained from A by replacing the *i*th column vector of A with the vector \vec{b} . What is the solution to the linear system?

(b) If A has cofactor matrix

$$C = \begin{bmatrix} 2 & -2 & 2\\ 2 & 3 & -3\\ 0 & 10 & 0 \end{bmatrix},$$

what is the inverse of A?