Math 307 Exam 2, Fall 2022

Name:

Question	Points	Score
1	10	
2	9	
3	5	
4	5	
5	10	
6	13	
7	0	
Total:	52	

- You have 75 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work, unless otherwise indicated. You will get almost no credit for solutions that are not fully justified.
- You may not use notes or calculators on this exam.
- The back side of each page can be used as scratch work or for longer solutions. Please indicate clearly if your solution extends to the back side of a page.

1. (10 points) True/False questions. No justification necessary.

(a) True False The eigenvalues of the matrix

[1	0	0	0
0 0 0	7	0	$\begin{array}{c} 0\\ 0\\ 5\end{array}$
0	0	2	0
0	0	0	5

are 1, 7, 2 and 5.

(b) True False If $T: V \to W$ is a linear transformation and $c_1v_1 + \cdots + c_nv_n$ is a linear combination in V, then

$$T(c_1v_1 + \dots + c_nv_n) = c_1T(v_1) + \dots + c_nT(v_n)$$

- (c) True False $\dim(P_9) = 9$.
- (d) True False If $T, S: V \to V$ are linear operators, then TS = ST.
- (e) True False If α and β are bases for V and P is the change of basis matrix from α to β , then

$$P[v]_{\beta} = [v]_{\alpha},$$

for all $v \in V$.

- (f) True False If A is a 11×12 matrix whose nullspace has dimension 4, then the dimension of the columnspace of A is 8.
- (g) True False If y_1, y_2 are $C^{\infty}(\mathbb{R})$ and c is some scalar, then

$$w(cy_1, cy_2) = c^2 w(y_1, y_2)$$

(h) True False The dimension of the kernel of the linear differential operator

$$(1+x)D^3 + x^2D^4 + D^2 - 1,$$

is 3.

- (i) True False The matrix of a linear transformation with respect to any pair of bases is always invertible.
- (j) True False The dimension of the columnspace of

0	1	2	0	$\begin{bmatrix} 4 \\ 7 \end{bmatrix}$	
0 0 0 0	0	$ \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	1		
0	0	0	0	0	,
0	0	0	0	0	

is 4.

2. (9 points) Multiple choice. No justification is necessary.

Mapping	Is linear	Is NOT linear
$T: \mathbb{R} \to \mathbb{R}; T(x) = 2x + 1$		
$T: M_{n \times n}(\mathbb{R}) \to \mathbb{R}; T(A) = \det(A)$		
$T: P_2 \to P_2; T(ax^2 + bx + c) = 2ax + b$		
$T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}; T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + d$		
$T: \mathbb{R}^2 \to \mathbb{R}^2; T(e_1) = -e_2 \text{ and } T(e_2) = e_1,$ where e_1 and e_2 are the standard basis.		

(a) Determine which of the following maps are linear transformations.

(b) Match the *n*-th order linear differential operator $L : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ with a list of functions that may form a basis for ker(L).

Letter	L	
	$(D^2 + 1)^2$	
	$D^2 - D - 2$	
	$D^2 - 4D + 5$	
	$(D-2)^{3}$	

Letter	Basis
А	e^{-x}, e^{2x}
В	$e^{2x}, xe^{2x}, x^2e^{2x}$
С	$\cos x, \sin x, x \cos x, x \sin x$
D	$e^{2x}\cos x, e^{2x}\sin x$

3. (5 points) Compute a basis for the column space of

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$$

4. (5 points) Show that the functions $y_1 = e^x \cos(2x)$ and $y_2 = e^x \sin(2x)$ are linearly independent in $C^{\infty}(\mathbb{R})$.

5. (10 points) Let

$$A = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 3 & -3 \\ 3 & 1 & -1 \end{bmatrix}.$$

- (a) Find the eigenvalues of A.
- (b) Compute a basis for ONE of the eigenspaces.

6. (13 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the matrix transformation

$$T\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}0 & 1 & 0\\-1 & 0 & 0\\0 & 0 & 1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}.$$

Let α denote the standard basis of \mathbb{R}^3 and let β be the basis

$$\beta = \left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\1 \end{bmatrix} \right\}.$$

Compute the following:

- (a) The change of basis matrix from α to β and its inverse.
- (b) The matrix of T with respect to α .
- (c) The matrix of T with respect to β .

- 7. (5 points (bonus)) Do not attempt this question unless you've answered every other question on this exam; I will not grade it if there is any blank problems on your exam. The *dual* of a vector space V is the vector space $V^* = L(V, \mathbb{R})$.
 - (a) Show that if $T: V \to W$ is linear, then the map $T^*: W^* \to V^*$ given by

$$T^*(\phi) = \phi T$$

is linear.

(b) If $\alpha = \{v_1, \ldots, v_n\}$ is a basis for show that the maps $v_j^* : V \to \mathbb{R}$ given by

$$v_j^*(v_i) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

are in V^* .

- (c) Show $\alpha^* = \{v_1^*, \dots, v_n^*\}$ is a basis for V^*
- (d) Let $\beta = \{w_1, \ldots, w_m\}$ be a basis for W. Show that $[T^*]^{\alpha^*}_{\beta^*} = ([T]^{\beta}_{\alpha})^T$.