Math 307 Practice Exam 1, Fall 2022

Name:

Question	Points	Score
1	16	
2	5	
3	5	
4	5	
5	8	
6	4	
7	6	
8	10	
9	7	14=
10	8	
Total:	74	

- \bullet You have 75 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work, unless otherwise indicated. You will get almost no credit for solutions that are not fully justified.
- You may not use notes or calculators on this exam.

- 1. (16 points) True/False questions. No justification necessary.
 - (a) True The zero space is a linear subspace of every vector space False
 - The only 1×1 matrices that are in row-reduced echelon form are (b) True False [0] and [1].
 - False A matrix of size 3×4 can have 4 leading 1's. (c) True
 - For all $n \times n$ matrices A, B and C, A(B+C) = AB + AC. (d) True False
 - If det(A) = 0, then A is invertible. (e) True False
 - There exist nonzero square matrices A and B such that $(A+B)^2 =$ (f) True False $A^2 + B^2$.
 - Multiplying a 3×3 matrix A on the left by (g) True False

has the effect of scaling every entry in row 2 of A by 7.

- Every basis of \mathbb{R}^9 has exactly 9 vectors. (h) True False
- (i) True False For each invertible matrices A and B the matrix AB is invertible and $(AB)^{-1} = A^{-1}B^{-1}$.
- False There is a 2×2 invertible matrix that has 3 entries that are 0. (j) True
- (k) True False There is a 3×4 matrix A and a 4×3 matrix B such that AB = BA.
- A homogeneous system of linear equations $A\vec{x} = \vec{0}$ is always con-(l) True False
- (m) True If A is not invertible, then A can be row reduced to a matrix with False a row of zeros.
- For any matrix A, the matrix AA^T is symmetric. True False
- If v_1, \ldots, v_n are linearly independent vectors in \mathbb{R}^n , then they form True False a basis for \mathbb{R}^n .
- For each $n \times n$ matrix A we have det(2A) = 2 det(A). (p) True False

2. (5 points) Which of the following matrices are in RREF. No justification is necessary.

Matrix							Is in RREF	Is NOT in RREF	
1	0	1	0	0	0		,		
0	0	0	1	1	0				
0	0	0	0	0	1				
0	0	0	0	0	0				
0	0	0	0	0	0			0 1-1 1	
0	0	0	0	0	0				
0	0	0	0	0	0				
0	0	0	0	0	0		J.		
1	0	0	0	0	0		1-1		
0	1	0	0	1	0				
0	0	1	0	0	0				
0	0	0	1	0	0	5050115			
1	0	1	0	0	0				
0	0	0	1	1	0				
0	0	0	0	0	0			V	
0	0	0	0	0	1				
1	0	0	0	1	0				
0	0	1	0	0	0				
0	0	0	0	1	0				
0	0	0	0	0	0			_	

3. (5 points) Which of the following are subspaces of the function space $F(\mathbb{R})$. No justification is necessary.

Set	Is a subspace	Is not a subspace	
The space $C^{\infty}(\mathbb{R})$ of all smooth functions.	/		
The set of functions f in $F(\mathbb{R})$ such that $f(0) = 0$.	V		
The set of functions f in $F(\mathbb{R})$ such that $f(2) = 2$.			
The polynomials P_3 .	~		
The set of all constant functions $f_c(x) = c$.	/		

4. (5 points) Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 6 & 6 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 3 & 6 & 2 & 0 & 0 & 1 \end{bmatrix} R_2 - 2R_1$$

$$A^{-1} = \begin{bmatrix} 10 & -8 & 1 \\ -2 & 1 & 0 \\ 7 & 5 & 1 \end{bmatrix}$$

Page 4

5. (8 points) Define the matrices

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 5 \end{bmatrix}$$

Compute the following, or state that the expression is undefined.

- (a) A(-C)
- (b) CA
- (c) B^TB
- (d) BB^T
- (e) C^3

(a)
$$A(-c) = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ -1 & -2 \\ -1 & -5 \end{bmatrix} = \begin{bmatrix} 0 & 5 \\ -3 & -4 \\ -2 & -15 \end{bmatrix}$$

(b) not defined.

(c)
$$B^{\dagger}B = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 6 \\ 1 & 1 & 3 \\ 6 & 3 & 9 \end{bmatrix}$$

6. (4 points) Solve the linear system of equations

$$x_1 - 7x_2 + x_5 = 3$$
$$x_3 - x_5 = 2$$
$$x_4 + x_5 = 1$$

$$X_1 = 7x_2 - x_5 + 3$$
 $X_3 = X_5 + 2$
 $X_4 = -x_5 + 1$

7. (6 points) Compute the determinant of the matrices:

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$Hint: do one row operation first.$$

(b)
$$B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$
 Hint: do one row operation first.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$(c) C = \begin{bmatrix} 3 & 0 & 0 & 2 \\ 8 & 4 & 7 & 0 \\ 1 & 1 & 0 & -1 \\ 2 & 3 & 0 & 0 \end{bmatrix}$$

$$(d) C = \begin{bmatrix} 3 & 0 & 0 & 2 \\ 8 & 4 & 7 & 0 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 \\ 1$$

(c) Cofactor approximation along Column 3.

$$dif(c) = 0 - 7 \cdot \begin{vmatrix} 3 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & 3 & 0 \end{vmatrix} + 0 - 0$$

$$= -7 \left[3 \cdot \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} - 0 + 2 \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \right]$$

$$= -7 \left(3 \left(0 + 3 \right) + 2 \left(3 - 2 \right) \right)$$
Page 7

$$= -7(9+2) = -77$$
.

$$\alpha = \left\{ \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\2\\0\\1 \end{bmatrix} \right\}$$

- (a) Are the vectors in α linearly dependent or independent?
- (b) Is the vector

$$\begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}$$

in the span of α .

- (c) Do the vectors in α span \mathbb{R}^4 ? Why?
- (d) Do the vectors in α form a basis for Span(α)? Why?
- (e) Find $v \in \mathbb{R}^4$ if

$$[v]_{\alpha} = \begin{bmatrix} 2 \\ 7 \\ -1 \end{bmatrix}.$$

This system of linear egus in (1,162,53. with corresponding augmented matrix

$$\begin{bmatrix}
1 & 1 & -1 & 0 \\
-1 & 1 & 2 & 0 \\
2 & 0 & 1 & 0 \\
2 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

Continue ____

(more space for problem 8)

(15) Performing the same sequence of Raw operations as above to the column rector

$$\begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix} R_1 + R_2 \longrightarrow \begin{bmatrix} 1 \\ 0 \\ 2 \\ -2 \end{bmatrix} R_2 - 2R_3 \longrightarrow \begin{bmatrix} -1 \\ -4 \\ 2 \\ 2 \end{bmatrix} R_2 - 3R_2$$

$$\begin{array}{c|c}
-5 \\
-4 \\
2 \\
+14
\end{array}$$

$$\begin{array}{c|c}
-5 \\
-8 & 2 \\
0 & 4 \\
14
\end{array}$$

(E) No. We mud at least 4 rectors.

(d) yes. The ecotors in or are t. I. and Spanles Spanles).

(a)
$$V = 2$$
. $\begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix} + 7 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 3 \\ 7 \\ 3 \end{bmatrix}$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} s \\ t \end{bmatrix}$$

where the entries in A and \vec{b} are real numbers and the entries in \vec{x} are variables. Suppose A has nonzero determinant. Use Cramer's rule to derive formulas for the solutions to the system $A\vec{x} = \vec{b}$.

$$A_{1} = \begin{bmatrix} 5 & b \\ t & d \end{bmatrix} \implies du_{1} A_{1} = 5d - bt$$

$$A_{2} = \begin{bmatrix} a & 5 \\ c & t \end{bmatrix} \implies du_{1} A_{2} = at - es$$

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 7 & 8 & 3 \\ 4 & 5 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 0 & 0 \\ 4 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

Compute

- (a) $\det(A^T B)$
- (b) $\det((B^{-1})^3A^2)$
- (c) $\det(A-2B)$

$$dus A = -1 \begin{vmatrix} 7 & 3 \\ 4 & 2 \end{vmatrix} + 2 \begin{vmatrix} 7 & 6 \\ 4 & 5 \end{vmatrix}$$

$$= -1 \left(14 - 12 \right) + 2 \left(35 - 32 \right)$$

$$= -1 \cdot 2 + 2 \cdot 3 = 4$$

(6)
$$dur((B^{-1})^3 \cdot A^2) = dur((B^{-1})^3) \cdot dur(A^2)$$

$$= dur((B^{-1})^3) \cdot dur(A)^2$$

$$= \left(\frac{1}{6}\right)^3 \cdot dur(A)^2$$

$$= \left(\frac{1}{6}\right)^3 \cdot 4^2$$

$$= \frac{2}{27}$$

Page 11

on back

$$A - 2B = \begin{bmatrix} 0 & 12 \\ 7 & 33 \\ 4 & 52 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 8 & 4 & 0 \\ 0 & 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -6 & 1 & 2 \\ -1 & 4 & 3 \\ -2 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow Aut (A - 2B) = 2 \begin{vmatrix} -1 & 4 \\ -2 & 1 \end{vmatrix} - 3 \begin{vmatrix} -6 & 4 \\ -2 & 1 \end{vmatrix}$$

$$= 2(-1 + 8) - 3(-6 + 2)$$

$$= 14 + 12$$

$$= 26.$$