Math 307 Final Practice, Spring 2023

Name:

Question	Points	Score
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	0	
10	0	
11	0	
12	0	
13	0	
14	0	
15	0	
16	0	
17	0	
Total:	0	

- You have 120 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work, unless otherwise indicated. You will get almost no credit for solutions that are not fully justified.
- No electronic devices are authorized with the exception of a scientific calculator.
- The back side of each page can be used as scratch work or for longer solutions. Please indicate clearly if your solution extends to the back side of a page.

- 1. True/False questions. No justification necessary.
 - (a) True False If A is a 3×5 matrix, then there is always a nonzero vector $x \in \mathbb{R}^5$ such that Ax = 0.
 - (b) True False There is an 2×2 upper triangular matrix A such that

$$A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- (c) True False Every invertible matrix is a product of elementary matrices.
- (d) True False If $det(A) = det(A^T)$, then A must be symmetric.
- (e) True False There is a real vector space with exactly 7 vectors.
- (f) True False If U and W are subpaces of a vector space V, then the space of all sums

$$U + W := \{u + w : u \in U \text{ and } w \in W\}$$

is a subspace of V.

- (g) True False The columns of any 3×4 matrix must be linearly dependent.
- (h) True False Every basis of $M_{3\times 4}(\mathbb{R})$ has 12 matrices.
- (i) True False If v_1, v_2, v_3 is a basis for V, then

$$v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_3, v_1 + v_3, v_1 + v_3, v_2 + v_3, v_1 + v_3, v_2 + v_3, v_3 + v_3, v_3 + v_3, v_3 + v_3, v_4 + v_3, v_5 + v_5, v_5 + v_5$$

is also a basis for V.

- (j) True False If $W(y_1, y_2, y_3) = 0$ on (a, b), then y_1, y_2, y_3 are linearly dependent in F(a, b).
- (k) True False Every polynomial is a linear transformation from \mathbb{R} to \mathbb{R} .
- (l) True False If q is any polynomial, then

$$e^{-2x}, xe^{-2x}, x^2e^{-2x}, x^3e^{-2x}$$

are all in the kernel of the differential operator $q(D)(D+2)^4$.

- (m) True False Every linear transformation from $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation Tx = Ax for some matrix $A \in M_{m \times n}(\mathbb{R})$.
- (n) True False If v is an eigenvector with eigenvalue 2, then 7v is an eigenvector with eigenvalue 14.
- (o) True False If A and B are similar, then det(A) = det(B).
- (p) True False If A is diagonalizable, then det(A) is equal to the product of its eigenvalues.
- (q) True False The matrix

[2	0	0	0
0	3	1	0
0	0	3	0
0 0	0	0	3

is in Jordan canonical form.

- (r) True False Every matrix is similar to an upper triangular matrix.
- (s) True False The dimension of the space of solutions for a homogeneous system of n first-order linear differential equations is n.

2. Solve the system of linear equations

$$4x_1 + 3x_2 + 2x_3 - x_4 = 4$$

$$5x_1 + 4x_2 + 3x_3 - x_4 = 4$$

$$-2x_1 - 2x_2 - x_3 + 2x_4 = -3$$

$$11x_1 + 6x_2 + 4x_3 + x_4 = 11$$

3. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Find $(AB)^T$, BA, $(BC)^{-1}$, CB, A^{-1} , B^{-1} , $B^T + 2C$. or state that the expression is undefined.

4. Let

$$A = \begin{bmatrix} -2 & 1 & 5 & 2 \\ -3 & -1 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Find det(2A) and det $(A^{-1}B^2C^T)$.

- 5. Prove or disprove the following.
 - (a) The set of solutions of the differential equation $y'' + \cos(x)y' y = 0$ is a subspace of $F(\mathbb{R})$.
 - (b) The set of vectors satisfying $Av = \lambda v$ for a fixed $n \times n$ matrix A is a subspace of \mathbb{R}^n .
 - (c) The set of invertible 3×3 matrices is a subspace of $M_3(\mathbb{R})$.
- 6. Consider the vectors

$$\alpha = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 6\\5\\4 \end{bmatrix} \right\}$$

- (a) Are the vectors in α linearly independent set of vectors? Clearly justify.
- (b) Do the vectors in α span \mathbb{R}^3 ? Clearly justify.
- (c) Does α form a basis of \mathbb{R}^3 ?

7. Find a basis for the span of the vectors

$$\begin{bmatrix} 1\\1\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4\end{bmatrix}, \begin{bmatrix} 1\\4\\7\\10\end{bmatrix}, \begin{bmatrix} 2\\0\\0\\2\end{bmatrix}$$

- 8. Prove or disprove the following.
 - (a) The map $T: C[0,1] \to \mathbb{R}$ given by

$$T(f) = \int_0^1 f(x)e^x \, dx$$

is a linear transformation.

(b) The map $T: C^{\infty}(\mathbb{R}) \to F(\mathbb{R})$ given by

$$T(f)(x) = f''(x) - 2f'(x) + f(x) + 1,$$

is a linear transformation.

(c) The map $T: P_2 \to P_2$ given by

$$T(ax^2 + bx + c) = bx^2 + cx + a,$$

is a linear transformation.

- 9. Find a basis for the 3rd order linear differential operator $L = (D 2)^3$.
- 10. Consider the following matrix

$$A = \begin{bmatrix} -7 & 6 & -6 \\ -3 & 2 & -3 \\ 6 & -6 & 5 \end{bmatrix}$$

- (a) Find the eigenvalues of A.
- (b) Find bases for the eigenspaces of A.
- (c) Is A diagonalizable? If so, give matrices P and D such that $D = P^{-1}AP$.

11. Let $T: P_2 \to P_2$ be the linear transformation T(f)(x) = f(2) + f'(2)(x-2). That is T maps each f to its Taylor polynomial of order 1 about x = 2. Let

$$\alpha = \{1, x, x^2\},\\beta = \{1, (x-2), (x-2)^2\}$$

(a) Make sure you know how to prove α and β are bases of P_2 , and that T is a linear transformation.

- (b) Find the change of basis matrix $P = [I]^{\alpha}_{\beta}$ and its inverse.
- (c) Find the matrix of T with respect to α .
- (d) Find the matrix of T with respect to β .
- (e) Find $[2x^2 x + 1]_{\beta}$.
- (f) Describe what T does geometrically to P_2 .
- 12. Find the general solution to the nonhomogeneous system of first-order linear equations

$$Y' = AY + \begin{bmatrix} 0\\x\\0 \end{bmatrix}$$

Where A is the matrix from problem 10.

13. The Jordan decomposition of the matrix

$$A = \begin{bmatrix} -1 & -1 & -3\\ 2 & 3 & 2\\ 3 & 1 & 5 \end{bmatrix}$$

is $J = P^{-1}AP$ where

$$J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \text{ and } P = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Find the general solution to system Y' = AY.

14. Suppose there are three tanks labeled 1,2 and 3 with pipes pumping well-mixed solution between them. Tank 1 originally starts with 10kg of salt, and each tank begins with 10000 liters of water. Consider the adjacency matrix

$$A = \begin{bmatrix} 0 & 5 & 0 \\ 2 & 0 & 5 \\ 7 & 4 & 0 \end{bmatrix}$$

Each entry a_{ij} represents the flow of solution from tank *i* to tank *j*. For instance, the entry $a_{12} = 5$ means 5 liters of solution are piped from tank 1 into tank 2 per second. Express

- (a) Sketch the tanks, pipes, and label each pipe with its flow of solution.
- (b) What does the sum of the entries in a row represent? What about the sum of the entries in a column?
- (c) Write a system of first order differential equations that describes the amount of salt in each tank at time t.
- (d) Write your system in matrix form.

15. A force

$$F = \begin{bmatrix} 120x - 56y \\ -6x - 24y \end{bmatrix}$$

is applied to a mass of 6kg.

- (a) Use Newton's second law of motion F = ma to obtain a system of two second-order linear differential equations that describe the position of the particle at time t.
- (b) Convert the system in part (a) to a system of four first-order linear differential equations.
- (c) If Y_H is the general solution to the system in (b), which entries describe the position of the mass?
- 16. The kernel of the operator in problem 9 is the same as the set of solutions to a third order linear differential equation.
 - (a) Which differential equation?
 - (b) Convert the differential equation you found (a) into a system of *first* order linear differential equations.
 - (c) If Y_H is the general solution to your system in (b), which entry is the general solution to the equation in (a).
- 17. Consider the 2×2 system

$$x' = xy - 2y$$
$$y' = 2x^2 + xy$$

- (a) Find the equilibrium solutions.
- (b) Find the linear part at each of the equilibrium solutions.