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(b) Estimate the rates of population growth in 1800 and
1850 by averaging slopes of secant lines.

(¢) Use the exponential model in part (a) to estimate the
rates of growth in 1800 and 1850. Compare these esti-
mates with the ones in part (b).

@ Qse the exponential model to predict the popula-
tion in 1870. Compare with the actual population of
38.558,000. Can you explain the discrepancy?

71-82 Evaluate the integral.

3 3
71. ‘.: —:([_\' 72. 3 [lX
- o 5x + 1
"2 dt 2
73. of =, 1
[ 74.L<\/I+\/;) dx
e x?+ x + 1 In ¢
75. [T ax 76. fﬂs_iud,
\2
77. fmdx - cos x
x 2 + sinx
sin 2x x
79. e !
1 + cos*x 80. f o+ 1 dx
4 ~ 5
81 ‘fo 2% ds 82. | x27dx

83. Show that _f cot xdx = In|sin x| + C by (a) differentiating
the right side of the equation and (b) using the method of
Example 11.

84. Sketch the region enclosed by the curves

In x (In x)?
— and y =
x x

y =

and find its area.

6.2* The Natural Logarithmic Function

If your instructor has assigned Sec-
tions 6.2—6.4 (pp. 408—438), you need
not read Sections 6.2%*, 6.3%, and 6.4*
(pp- 438-465).

this function.

85.

86.

87.

88.
89.
920.
91.

92.

93.

94.

Find the volume of the solid obtained by ro¢

under the curve 1
YT k1

from 0 to 1 about the x-axis.

atin 2 lhe

Find the volume of the solid obtained by rotating
€
under the curve ]

y=x2+1

I.Qg i()n

from O to 3 about the y-axis.

The work done by a gas when it expands from vol
‘Yf P dV, where P = P(y) isume V
the Pri

to volume V2 is W = | !

ure as a function of the volume V. (See Exercise i
Boyle’s Law states that when a quantity of gas expana 9.
constant temperature, PV = C, where Cis a Constan ?at
initial volume is 600 cm”® and the initial pressure i 15~0f {
find the work done by the gas when it expands at cong b
temperature to 1000 cm®. ant

Find fif f"(x) = x 7%, x>0, f(1) =0,and £(2) <

€s.
s N

If g is the inverse function of f(x) = 2x + In x, finq 90)
If f(x) = ¢* + In x and A(x) = f7'(x), find h'(e).

For what values of m do the line y = mx and the curye

y = x/(x* + 1) enclose a region? Find the area of the

region.

(a) Find the linear approximation to f(x) = In x near|,

(b) Tllustrate part (a) by graphing f and its linearization,

(c) For what values of x is the linear approximation
accurate to within 0.17?

Use the definition of derivative to prove that

In(1 + x)
lu})) —_— e

=1

A

. . P o
Show that lim { | + — forany x > 0.
norx LR -

In this section we define the natural logarithm as an integral and then show that it obey:
the usual laws of logarithms. The Fundamental Theorem makes it easy to differentid®

(1] Definition The natural logarithmic function is the function defined bY

In x = [

v 1
Ta'l x>0

J1
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The existence of this function depends on the fact that the integral of a continuous
function always exists. If x > 1, then In x can be interpreted geometrically as the area
under the hyperbola y = 1/t from t = 1 to t = x. (See Figure 1.) For x = 1, we have

area=1Inx

1n1=£1%dt=0

¢ 1
— For0 <x< 1, 1nx=f%dt=—f’7d;<o
| X
FIGURE 1 and so In x is the negative of the area shaded in Figure 2.
EXAMPLE 1

(a) By comparing areas, show that% <In2< %.
(b) Use the Midpoint Rule with n = 10 to estimate the value of In 2.

SOLUTION

> (a) We can interpret In 2 as the area under the curve y = 1/t from 1 to 2. From Fig-
ure 3 we see that this area is larger than the area of rectangle BCDE and smaller than

the area of trapezoid ABCD. Thus we have

y Lii<ma<i1-3(1+1)
l<m2<3

(b) If we use the Midpoint Rule with f() = 1/t,n = 10, and At = 0.1, we get

A
2 1
g 2= —di = (0.D[£(1.05) + f(L.I5) + - + £(1.95)]
e Dot
B
0 I 2 t N 1 1
— ((;'1 —— p e s —— = (),
N\Tos T T 195 ) =063 =
FIGURE 3
she smiegral that defines Inx is exactly the type of integral discussed

o nental Theorem of Caleulus (see Section 4.3). In fact, using that

and so

2]

We now use this differentiation rule to prove the following properties of the loga-
rithm function.

E] Laws of Logarithms If x and y are positive numbers and r is a rational num-
ber, then

b ,
1. In(xy) =lnx +Iny 2. ln(;—) =Ilnx—1Iny 3. In(x") =rlnx
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PROOF

1. Let f(x) = In(ax), wher
the Chain Rule, we have

e a is a positive constant. Then, using EqUatiOn )
an,

Therefore f(x) and In x have the same derivative and so they must differ byac cong

In(ax) =Inx + C

Putting x = 1 in this equation, we getlna = Inl+C=0+C=CTng

In(ax) = Inx + In.a
If we now replace the constant a by any number y, we B

In(xy) =Inx + Iny

2. Using Law 1 with x = 1/, we have

|
1nl+1ny=ln(—'y)=1n1 =0
y Yy

1
and so In—=-Iny
y

Using Law 1 again, we have

, |
1n(i> ﬂn(wl) =hr+th=hx-Iny
y y Y

The proof of Law 3 is left as an exercise. I

(x* 4+ 5)sin x

EXAMPLE 2 Expand the expression In

4
SOLUTION Using Laws 1, 2, and 3, we get
(x* + 5)*sin x
n-—- — = In(x* + 5 + In o fn(y?
P ( ) in(x' + 1)
=4’ +5) + lnany -~ It + 1)

EXAMPLE 3 Expressina + fInbasa single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have

Ina+3Inb=1Ina+Inph"

=Ina + Inyb
= ln(a\/-b_)

In order to graph y = In x, we first determine its limits:

(@) hm Inx=c (b) hm Iny=—=
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PROOF

() Using Law 3 with x = 2 and r = n (where n is any positive integer), we have
In(2") = n1n 2. Now In 2 > 0, so this shows that In(2") — o as n — . But In xis an
increasing function since its derivative 1/x > 0. Therefore In x — o as x — .

(b) If we let t = 1/x, then t — o0 ag x — 0*. Thus, using (a), we have

111})1+ In x = lim 1n(l) = lim (=Int) = — H

—» t 1—®

Ify=Inx x> 0, then

dy 1
—=—> and
dx x

d*y 1
dx* X s
which shows that In x is increasing and concave downward on (0, ). Putting this infor-
mation together with (4), we draw the graph of y = In x in Figure 4.

Since In 1 = 0 and In x is an increasing continuous function that takes on arbitrarily
large values, the Intermediate Value Theorem shows that there is a number where In x
takes on the value 1. (See Figure 5.) This important number is denoted by e.

L@ Definition e is the number such that Ine = 1.
102 R EXAMPLE 4 Use a graphing calculator or computer to estimate the value of e.
| ¥=inx SOLUTION According to Definition 5, we estimate the value of e by graphing the
curves y = In x and y = 1 and determining the x-coordinate of the point of intersec-
‘ / y=1 tion. By zooming in repeatedly, as in Figure 6, we find that
% e~ 2718 u
0'982,7 | 2.75
Wi more sophisticated methods, it can be shown that the approximate value of e, to
FIGURE 6 .

ool places, is

e =~ 2.71828182845904523536

canspansion of e is nonrepeating because e is an irrational number.
v Formula 2 o differentiate functions that involve the natural logarithmic

XAMFLE 5 Differentiate y = In(x® + 1).
SOLUTION To use the Chain Rule, we let u = x* + 1. Then y=lInu,so

dy _dy du 1 du

dx  du dx  u dx

1 3x?
x3+l(x) X+ 1

In general, if we combine Formula 2 with the Chain Rule as in Example 5, we get
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@ o o
EXAMPLE 6 Find —— In(sin x).

SOLUTION Using (6), we have

d . 1
— (sin x) = — COS X = cot x
sin x

d . .
— In(sin x) Sy

EXAMPLE 7 Differentiate f(x) = +/In x.
SOLUTION This time the logarithm is the inner function, so the Chain Ryje gives

d 1 1 1
(v) = 1 MV (nx)=——F— "= T—F——
[ = 3(nx) dx () 2VInx  x 2x+/In x [}
EXAMPLE 8 Find - In ———_
ind — In —F/——.
b Vx =2
SOLUTION 1
d I il I 1 d x+1
dx " Jx-2 xt1 dr+x-2
o= 12,
VX =2 =21 = (x+ DE)x - 2)2
Figure 7 shows the graph of the func- ] i
u(‘)n f of .Example 8 togeth_er wnh.lhe . x =10 = %(\ +1)
graph of its derivative. It gives a visual = =
check on our calculation. Notice that (x + D(x — 2)
JS'(x) is large negative when f is rapidly
decreasing and f'(x) = 0 when f has a — r=>S
minimum. 2(x 4+ D(x — 2)
YA : - . . . :
SOLUTION 2 If we first simplify the given function visi. e 1 aws of Logarithms, then
f — = the differentiation becomes easier;
1T ——/ i X A d
— In ———= ——lIn(x + 1) - 'y -2
5 5 dx \/r + 2 (/A\‘[ ( ) 2 il )]

(This answer can be left as written, but if we used a common denominator we would
FIGURE 7 see that it gives the same answer as in Solution 1)

EXAMPLE 9 Discuss the curve y = In(4 — x?) using the euidelines of Section 3.2-
A. The domain is

4 -0>0={r|<a}={x||x] <2} =(-2.2)
B. The y-intercept is f(0) = In 4. To find the x-intercept we set

Yy=In4 —-x?) =9
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We know that In 1 = 0, so we have 4 — x* =1 = x? = 3 and therefore the
x-Intercepts are +./3
- Since f(—x) = f(x), f is even and the curve is symmetric about the y-axis.

We look f_or vertical asymptotes at the endpoints of the domain. Since 4 — x> — 0
asx — 27 and also as x —> —2", we have

o0

4\_1'21217 In(4 — x?) = —w Ali1112+ In(4 — x*) = —o=

Thus the lines x = 2 and x = —2 are vertical asymptotes.

=2
& o =52,

Since f'(x) > 0 when —2 < x < 0 and f'(x) < 0 when 0 < x < 2, f is increasing
on (—2,0) and decreasing on (0, 2).

The only critical number is x = 0. Since f' changes from positive to negative at 0,
f(0) = In 4 is a local maximum by the First Derivative Test.

ey . = )(=2) P22y =8 — 2%
- T = 4 —x?) T ey

Since f"(x) < O for all x, the curve is concave downward on (—2, 2) and has no
inflection point.

H. Using this information, we sketch the curve in Figure 8.

EXAMPLE 10 Find f'(x) if f(x) = In|x]|.

) SOLUTION Since
Figure 9 shows the graph of the func-

tion f(x) = In|x | in Example 10 and Flo) = {m = x>0
its derivative f'(x) = 1/x. Notice that . n(=x) if x < 0
when x is small, the graph of y = in ! T

is steep and so f'(x) is large (positive s :

or negative). by e
i = : )
— (1) =— ifx<O0
—x X
Thus f'(x) = 1/xforall x # 0.

The result of Example 10 is worth remembering;:

< (infxl) = <

X

The corresponding integration formula is

j.—l—dx——‘ln\x\+c
b
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Since the function f(x) = (In x)/x
in Example 12 is positive for x > 1,
the integral represents the area of the
shaded region in Figure 10.

y
0.5 _Inx
=%
o e
FIGURE 10

Notice that this fills the gap in the rule for integrating power functions:
h o

n+l
" L@ ifned =i
n+1

J‘ x"dx =

The missing case (n = —1) is supplied by Formula &

%
EXAMPLE 11 Evaluate j 211 dx.

2
x
PR = x2 ause the differenti -
SOLUTION We make the substitution u = X + ilbe:c o tal dy < 5, "
occurs (except for the constant factor 2). Thus xdx = 3
du 1
f 2x dx =3 —=sInful +C
x“+1

L+ 1]+ C=4IG? + 1) + €

g 2
Notice that we removed the absolute value signs because x° + 1 > 0 for all x, We
could use the Laws of Logarithms to write the answer as

Inv/x2+1+C

but this isn’t necessary. B
el
EXAMPLE 12 Calculate | —’iidx.

SOLUTION We let u = In x because its differential du = dx/x occurs in the integral.
Whenx=1,u=1Inl1=0;whenx = ¢, u == Ine = 1. Thus

{
~ h'] - r b 1
e a1} J i 1
} —dx =} udu o = g
Iox Jo L2

EXAMPLE 13 Calculate j tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

( fosin x
J tan x dx = J —dx
‘ cos x
This suggests that we should substitute 1 = cos x, since then du = —sin x dx and s0

sin x dx = —du:

ftanxdx=f z;:); dx = _f%[du

= -Inful + C=—In|cosx| + C.

Since —In|cos x| = In(] cos x| ') = In(1/]cos x[) = In| sec x|, the result of Exa”
ple 13 can also be written as

ftanxdx= ln|secx| +C




If we hadn’t used logarithmic differen-
iation in Example 14, we would have
had to use both the Quotient Rul.e

and the Product Rule. The resulting
calculation would have been

horrendous.
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@ Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or

powers can often be simplified by taking logarithms. The method used in the following
example is called logarithmic differentiation.

3/4
EXAMPLE 14 Differentiate y — %
X

SOLUTION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

Iny=3Inx+ 1In&x>+ 1) — 5In@x + 2)
Differentiating implicitly with respect to x gives

ldy 3 1 1  2x 3

oI S . S
ydx 4 x 2 x*+1 3x + 2
Solving for dy/dx, we get

ay_ (3 _x 15
dx y4x x2+ 1 3x + 2

Because we have an explicit expression for y, we can substitute and write

dy _ xhxTF 1/( 3 x 15 )

dx Bx + 2)3

—4_1—; x2+1 3x + 2

Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws
of Logarithms to simplify.

o~

. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y’.
- /tx) <2 0 for some values of x, then In f(x) is not defined, but we can still use loga-
e differentiation by first writing | y| = | f(x) | and then using Equation 7.
6.2* EXERCISES
1-4 Use the Laws of Logarithms to expand the quantity. 7. In10 +21n5 8. In3 + ;—ln 3
— [x =1 9. 1n(x + 2)* + 5[In x — In(x* + 3x + 2)]
L In Vab 2. In+’ -
Vi+i 10. Inb + 2Inc — 3Ind
x*
3 In F 4. ln(s4\,/‘t\/’;) -
) 11-14 Make a rough sketch of the graph of each function. Do
not use a calculator. Just use the graph given in Figure 4 and, if
3-10 Expy ; . ecessary, the transformations of Section 1.3.
Express the quantity as a single logarithm. n y
5.2lng\-+31n\,__ln7 1. y=—-Inx 12. y = In|x|
6 13. y=In(x + 3) 14. y=1+ In(x — 2)
' ]0g104 + 10“ :

1
swoa — glogm(a + 1)
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15-16 Find the limit. 505 SR RIS =y e
1s. ‘h_‘,’?J, In(x? — 9) 51. Find a formula for £ (x) if f(x) = In(x — 1).

16. lim [In(2 + x) — In(1 + )] d’
52. Find _d?.(x In x).

17-36 Differentiate the function. 53-54 Use a graph to estimate the roots of the equatj

. : on eopy,.
17. f(x) =x’Inx P . to one decimal place. Then use these estimates as t, .
) 1 PG= milmee=cx approximations in Newton’s method to find the roogg Conl:l
19. f(x) = sin(In x) 20. f(x) = In(sin’x) six decimal places. to
21, f() =L 22, y = 1 53. (x —4)’=Inx 54. In(4 — ¥y <
A+ In x
S(x) = sin x In(5x) 55-58 Discuss the curve under the guidelines of Sectiy, 35
24, h(x) = ln(x + Vx? — l) 55, y = In(sin x) 56. y = ln(tanz,\-)
a:.= X% 2
25. g(x) = In — - 26. g(t) =1+ Int 57. y =In(1 + x%) 38. y=In(l +
2 (2)’ + 1)5 az - 22 4 § -
7. GO = In e 28. H(z) = In\ [ [EH59. If f(x) = In(2x + xsin x), use the graphs of f, " gy -
y 1 a®+ z* to estimate the intervals of increase and the inflectiop point
2 f f on the interval (0, 15]. )
29. F(r) = (Inr)’sin ¢ 30. P(v) = sl rien ( ]
I = 7 60. Investigate the family of curves f(x) = In(x* + ¢). Why
In « : : inflection points and a t s
31. f(u) = ——— 32, v = N2 happens to the inflection p symptotes as
s I + In(2u) = intin changes? Graph several members of the family to illustrg;
33. y=1In|2 — x — 5x3 T R what you discover.
35. y = wan[In(ax + h)] 36. y = In(csc x — cot x) Gi-64 Use loganithinic differentiation to find the derivative of
I EE——— the tunction,
. Y e s o (x+ D -3
ooy == {x° 3+ vt o+ oyt e . A ot L
37-38 Find v’ and y". o o : 62. ) (x—
37. y=+x Inx 38 v~ In(l + Inw) [ (7 + 1)sirs
———— S . . 63, v \,’ AT 64, y = —r—
! L
39-42 Differentiate / and find the domain of /. e
39. f(x) = [ S 40. [(x)  Inlx’  20) 65-74 bvaluate the itegral.
’ I —In(x — 1) . ;
AR} .
_ e , 65. | - dy ==
41. f(x) =1 —Inx 42, f(x) — Inlnin.x J2oy Jo sv+ 1
e PO 67. | dt o ~ R
43. If f(xv) = In(x + Inx). find f'(1). 2 j] FT{ 68. L Jr + _\—,:_— .
Inx | e
44, If f(x) = ,find f7(e). ST,
RY 69 (0. X + l . c 6 (1.\'
g .‘1 : dx 70. | -
45-46 Find f'(x). Check that your answer is reasonable by X Jo xlInx
comparing the graphs of f and f". - (In x)? cos X
> 71_ - o . : S . /\.
45. f(x) =sinx +Inx 46. f(x) =In(x" +x + 1) .‘ s 72. j st
) . 73 sin 2x . cos(lnt) i
47-48 Find an equation of the tangent line to the curve at the . ( e dx 74. | —/r/“
given point. _,__\_ ' I

47. y = sin(2 Inx), (1,0) 48. v = In(x* —7), (2,0)

75. Show that _|‘ cot xdx = In[sin x| + Cby (@ diﬁ-cﬁa‘iiz_]
) ) the right side of the equation and (b) using the me™
49. Find ' if y = In(x* + ¥%). Biinle

et



«ch the region enclosed by the curves

6. Ske R
@ ¢ In x and _ (In x)*
YT ox x

and find its ared.

Find the volume of the solid obtained by rotating the region
77. under the curve

1
Vx+ 1

from 0 tO 1 about the x-axis.

Find the volume of the solid obtained by rotating the region
under the curve

78.

from 0 to 3 about the y-axis.

79. The work done by a gas when it expands from volume V,
to volume V2 is W = _I“,.f P dV, where P = P(V) is the pres-
sure as a function of the volume V. (See Exercise 5.4.29.)
Boyle’s Law states that when a quantity of gas expands
at constant temperature, PV = C, where C is a constant.

If the initial volume is 600 cm® and the initial pressure is
150 kPa, find the work done by the gas when it expands at
constant temperature to 1000 cm®.

80. Find fif f"(x) = x = x >0, f(1) = 0,and £(2) = 0.
81. If g is the inverse function of f(x) = 2x + In x, find ¢'(2).

¥ 82, (a) Find the linear approzimation to f(x) = In x near 1.
(b) Hlustrate part a) b ning [ and its linearization.
(c) For what value neor approximation
accurate to wi

6.3* The Natur= nential Function

Since Inis an increasing function, it is one-to-one and therefore has an inverse function,

SECTION 6.3* The Natural Exponential Function 447

83. (a) By comparing areas, show that
l<mnis<

(b) Use the Midpoint Rule with n = 10 to estimate In 1.5.

84. Refer to Example 1.

(a) Find an equation of the tangent line to the curve y = 1/t
that is parallel to the secant line AD.
(b) Use part (a) to show that In 2 > 0.66.

85. By comparing areas, show that

1
n—1

i 1 1
ot —<Ina<l+—+—+ -+
n s 2 3

+

2
2

W=

86. Prove the third law of logarithms. [Hint: Start by showing that
both sides of the equation have the same derivative.]

87. For what values of m do the line y = mux and the curve
y = x/(x* + 1) enclose a region? Find the area of the region.

¥ 88. (a) Compare the rates of growth of f(x) = x°' and
g(x) = In x by graphing both f and g in several viewing
rectangles. When does the graph of f finally surpass the
graph of g?
(b) Graph the function A(x) = (In x)/x*' in a viewing rect-
angle that displays the behavior of the function as x — .
(c) Find a number N such that

l'.
if x>N then —=<01
=

A

89. Use the definition of derivative to prove that

. In(1 + x)
lim ——=
x—0 X

1

which we denote by exp. Thus, according to the definition of an inverse function,

J x)=y & (s . m

exp(x) =y < Iny=x

and the cancellation equations are

T = o

|
\ |

FU'0) =« @ 1

In particular, wé have

e

exp(lnx) = x and In(exp x) = x
exp(0) =1 since Inl =0
exp(l) =e since Ine =1




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

