
14. N A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical (see Problem 17 of Section 1.1). Water 
Containing 0.01 g/gal of the chemical flows into the pond at a rate of 300 gal/h, and water also flows out of the pond at the same rate. 
Assume that the chemical is uniformly distributed throughout the pond. 

a. Let QO be the amount of the chemical in the pond at time t. 
Write down an initial value problem for Q(). 
b. Solve the problem in part a for O). How much chemical is 
in the pond after 1 year? 

1.3 

world. 

and the wave equalion 

d'Q0) 

The main purposes of this book are to discuss some of the properties of solutions of di fferential 
equations and to present some of the methods that have proved effective in finding solutions 
or. in some cases, in approximating them. To provide a framevwork for our presentation, 
we describe here several useful ways of classifying differential equations. Mastery of this 
vOcabulary is essential to selecting appropriate solution methods and to describing properties 
of solutions of differential equations that you encounter later in this book -and in the real 

di2 

Classification of Differential Equations 

+RO) 

the form 

Ordinary and Partial Differential Equations. One important classification is based 
on whether the unknown function depends on a single independent variable or on several 
independent variables. In the first case, only ordinary derivatives appear in the differential 
equation, and it is said to be an ordinary differential equation. In the second case, the 
derivatives are partial derivatives, and the equation is called a partial differential equation. 

All the differential equations discussed in the preceding two sections are ordinary 
differential equations. Another example of an ordinary differential equation is 

dt 

,8²u(x,t) 

+ ¿ Q) = E(0), 

, o'u(x, ) 

1.3 Classification of Differential Equations 

c. At the end of 1 year the source of the chemical in the pond 
is removed; thereafter pure water flows into the pond, and the 
mixture flows out at the same rate as before. Write down the 

initial value problem that describes this new situation. 

ðu(x, t) 

d. Solve the initial value problem in part c. How much chemical 
remains in the pond after 1 additional year (2 years from the 
beginning of the problem)? 
e. How long does it take for Q(t) to be reduced to 10 g? 

f. 

o'u(x,t) 

for the charge Q() on a capacitor in a circuit with capacitance C, resistance R, and inductance 
L: this equation is derived in Section 3.7. Typical examples of partial differential equations are 
the heat conduction equation 

G Plot Q(t) versus t for 3 years. 

(1) 

(2) 

(3) 

Here, a' and u are cerlain physical constants. Note that in both equations (2) and (3) the 
dependent variable u depends on the two independent variables x and t. The heat conduction 

euuation describes the conduction of heat in a solid body, and the wave equation arises in a 
Variety of problens involving wave notion in solids or luids. 

Gvstems of Differential Equations. Another classitication of difterenial equations de 
Pends on the numnber of unknown functions that are involved. If there is a single function 

17 

be delermined, then one diflerential equation is sufficient. However, if there are wo or 
o0re unknown functions, then a systenn of ditterential equations is required. 'or exanple, the 

Lotka-Voliera, ur predalor prey, cquations are inportant in ecological modeling. They have 
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For example, 

dx 

dt 

dy 
dt 

where x() and y() are the respective populations of the prey and predator species. The positive 
Constants a, a, c, and y are based on empirical observations and depend on the particular pair 
of species being studied. Systems of equations are discussed in Chapters 7 and 9; in particular, 
the Lotka-Volterra equations are examined in Section 9,5. In some areas of application 1t 1s 
not unusual to encounter very large systems containing hundreds, or even many thousands, 
of differential equations. 

leads to the two equations 

Order. The order of a differential equation is the order of the highest derivative that appears 
in the equation. The equations in the preceding sections are all first-order equations, whereas 
equation (1) is a second-order equation. Equations (2) and (3) are also second-order partial 
differential equations. More generally, the equation 

y'= 

= ax - aXy 

=-cy + Yxy, 

F(t, ut), u'(t), .. ,un)(0)) = 0 
is an ordinary differential equation of the nth order. Equation (5) expresses a relation between 
the independent variable t and the values of the function u and its first n derivatives 
u', u", .. , u"). It is convenient and customary in differential equations to write y for u(t), with 

y',y", ... ,y") standing for u'(t), u"(t), ... ,u(t). Thus equation (5) is written as 

2 

F(t,y, y', .. y) = 0. 

y" + 2e'y" + yy' = t 

is a third-order differential equation for y = u(t). Occasionally, other letters will be used 
instead of t and y for the independent and dependent variables; the meaning should be clear 
from the context. 

yd = f(t, y, y', y", . , yln-1). 

We assume that it is always possible to solve a given ordinary differential equation for the 
highest derivative, obtaining 

-t+ye- 16y 

(4) 

(v') + ty' + 4y = 0 

This is mainly to avoid the ambiguity that may arise because a single equation of the form (6) 
may correspond to several equations of the form (8). For example, the equation 

or y'=IV2-16v 

(5) 

2 

F(t,y, y', .. y)) = o 

(6) 

(7) 

a,(0)yn + a, ()yn-) +* + a,()y = g(t). 

(8) 

(9) 

Linear and Nonlinear Equations. A crucial classification of differential equations is 
whether they are linear or nonlinear. The ordinary differential equation 

(10) 

is said to be linear if F is a linear function of the variables y, y', ... yln); a similar definition 
applies to partial differential equations. Thus the general linear ordinary differential equation 
of ordern is 

(11) 

Most of the equations you have seen thus far in this book are linear; examples are 
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse 
population. Similarly, in this section, equation (1) is a linear ordinary differential equation 
and equations (2) and (3) are linear partial differential equations. An equation that is not of the 
form (11) isa nonlinear equation. Equation (7) is nonlinear because of the term yy'. Similarly, 



cacn equation in the system (4) js noninear because of the terms that involve the product oT 
the two unknown functions xy. 

A Simple physical problem that leads lo a nonlinear differential equation is the oscillating 
Pendulum. The angle = �() that an 0scillating pendulum of length I makes with the vertical 
direction (see Figure 1.3.1) satisfes the cquation 

d1? 
4 

Whose derivation is outlined in Problems 22 through 24. The presence of the term involving 
sin() makes equation (12) nonincat. 

sin(0) = 0, 

has the solution 

FIGURE 13.1 An oscillating pendulum. 

d'0 

d12 

m 

The mathematical theory and methods for solving linear equations are highly developed. 
In contrast. for nonlincar equations the theory is more complicated. and methods of solution 
are less satistactorv. In view of this. it is fortunatc that many significant problems lead to linear 
ordinary diflerential equations or can be approximated by linear equations. For example, for 
the pendulum. if the angle e is small. thcn sin(e) and equation (12) can be approximated 
by the lincar cquation 

wherec is an arbiray conslant 

mg 

+0=0. 

1.3 Classification of Differential Equations 

This process of approximating a nonlincar equation by a linear one is called linearization; it 
is an extremely valuable way to deal with nonlinear equations. Nevertheless, there are many 
physical phenomena that simply cannot be represented adequately by linear equations. To 
study these phenomena, it is essential to deal with nonlinear equations. 

In an clementary text it is natural to emphasize the simpler and more straightforward 
parts of tthe subject. Therelore, the greater part of this book is devoted to linear equations and 
various methods lor solving them. However, Chapters 8 and 9, as well as parts of Chapter 2, are 
concerned with nonlinear equations. Whenever it is appropriate, we point out why nonlinear 
equations are. in general, more difficult and why many of the techniques that are useful in 
solving linear equations cannot be applied to nonlinear equations. 

¢") = f(t. ). '(), ... .a-)() 

d 

Solutions. A solution of the n order ordinary differential equation (8) on the interval 
axl<ß is a function ¢ such that ¢'. ¢", ... 

dp P 

(12) 

for every t in a <I<B. Unless stated otherwise, we assume that the function f of equation (8) 
is a real-valued function, and we are interested in obtaining real-valued solutions y = (). 

Recall tha in Section 1.2 we found solutions of certain equations by a process of direct 
inlegration. For inslance, we found that the equation 

(13) 

450 

P) = 900 + ce/2 

(14) 

(15) 

(16) 

19 

.n exist and satisfy 
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It is often not so easy to find solutions of differential equations., However, if you find a 
function that you think may be a solution of a given equation, it is usually relatively easy to 
determine whether the function is actually a solution: just substitute the function into the 
equation. 

For example, in this way it is easy to show that the function v, (t) = cos(t) is a solution of 

y' +y= 0 (17) 

for all t. To confirm this, observe that y, (t) =- sin(t) and y" (t) = - cos(t); then it follows that 
Y)+{() =0. In the same way you can easily show that y, (t) = sin(t) is also a solution of 
equation (17). 

Of course, this does not constitute a satisfactory way to solve most differential equations, 
because there are far too many possible functions for you to have a good chance of finding the 
correct one by a random choice. Nevertheless, you should realize that you can verify whether 
any proposed solution is correct by substituting it into the differential equation. This can be a 
very useful check; it is one that you should make a habit of considering. 

Some Important Questions. Although for the differential equations (15) and (17) we 
are able to verify that certain simple functions are solutions, in general we do not have such 
solutions readily available. Thus a fundamental question is the following: Does an equation 
of the form (8) always have a solution? The answer is �No." Merely writing down an equation 
of the form (8) does not necessarily mean that there is a function y = ) that satisfies it. 
So, how can we tell whether some particular equation has a solution? This the question of 

existence of a solution, and it is answered by theorems stating that under certain restrictions 
on the functionf in equation (8), the equation always has solutions. This is not a purely 
theoretical concern for at least two reasons. If a problem has no solution, we would prefer to 
know that fact before investing time and effort in a vain attempt to solve the problem. Furthe, 
if a sensible physical problem is modeled mathematically as a differential equation, then the 
equation should have a solution. Ifit does not, then presumably there is something wrong with 
the formulation. In this sense an engineer or scientist has somne check on the validity of the 
mathematical model. 

If we assume that a given differential equation has at least one solution, then we may 
need to consider how many solutions it has, and what additional conditions must be specified 
to single out a particular solution. This is the question of unigueness. In general, solutions 
of differential equations contain one or more arbitrary constants of integration, as does the 
solution (16) of egquation (15). Equation (16) represents an infinity of functions corresponding 
to the infinity of possible choices of the constant c. As we saw in Section 1.2, if p is specified 
at some time t, this condition will determine a specific value for c; even so, we have not yet 
ruled out the possibility that there may be other solutions of equation (15) that also have the 
prescribed value of p at the prescribed time t. As in the question of existence of solutions, 
the issue of uniqueness has practical as well as theoretical implications. If we are fortunate 
enough to find a solution of a given problem, and if we know that the problem has a unique 
solution, then we can be sure that we have completely solved the problem. If there may be 
other solutions, then perhaps we should continue to search for them. 

A third important question is: Givena differential equation of the form (8), can we actually determine a solution, and if so, how? Note that if we find a solution of the given equation, we 
have at the same time answered the question of the existence of a solution. However, without 
knowledge of existence theory we might, for example, use a computer to find a numerical 
approximation to a "solution" that does not exist. On the other hand, even though we may 
know that a solution exists, it may be that the solution is not expressible in terms of the usual 
elementary functions -polynomial, trigonometric, exponential, logarithmic, and hyperbolic 
functions. Unfortunately, this is the situation for most differential equations. Thus, we discuss 
both elementary methods that can be used to obtain exact solutions of certain relatively simple 
problems, and also methods of a more general nature that can be used to find approximations 
Lo solutions of more difficult problems. 

Technology Use in Differential Equations. Technology provides many extremely valuable Lools for the study of differential equations. For many years computers have been used 
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tO execute numerical algorithms, such as those described in Section 2.7 and in Chapter 8, to 
COnstruct numerical approximations to solutions of differential equations. These algorithms 
nave been refined to an extremely high level of generality and efficiency. A few lines of 
computer code, written in a high-level programming language and executed (often within a 
raction of a second) on a relatively inexpensive computer, tablet, or smartphone, sutnce to 
approximate to a high degree of accuracv the solutions of a wide range of differential equations. 
More sophisticated routines are also readily available. These routines combine the ability to 
anale very large and complicated systems with numerous diagnostic features that alert the 
user to possible problems as they are encountered. 

The usual output from a numerical algorithm is a table of numbers, listing selected values 
of the independent variable and the corresponding values of the dependent variable. With 
appropriate software it is easy to display the solution of a differential equation graphically, 
whether the solution has been obtained numerically or as the result of an analytical procedure 
of some kind. Such a graphical display is often much more illuminating and helpful in 
understanding and interpreting the solution of a differential equation than a table of numbers 
or a complicated analytical formula. In the not so distant past, graphical representations of 
solutions of differential equations was possible only with the purchase of special-purpose 
software packages. Today, high quality web-based graphical tools are easily, and freely. 
accessible on a laptop computer, smartphone, or other portable device. Improvements in 
performance and access will continue to improve. The increased power and sophistication of 
modern smartphones, tablets, and other mobile devices have brought powerful computational 
and graphical capability within the reach of individual students. Several of our current favorite 
utilities are listed in the references at the end of this chapter. You should consider, in the light 
of your own circumstances, how best to take advantage of the available computing resources. 
You will surely find it enlightening to do so. 

Another aspect of computer use that is very relevant to the study of differential equations 
is the availability of extremely powerful and general software packages that can perform a 

wide variety of mathematical operations. Among these are Maple, Mathematica, and MATLAB, 
each of which can be used on various kinds of computational platforms ranging from 
smartphones to massively parallel computers. All three of these packages can execute extensive 
numerical computations and have versatile graphical facilities. For example, they can perform 
the analytical steps involved in solving many differential equations, often in response to a 
single command. Anyone who expects to deal with differential equations in more than a 
superficial way should become familiar with at least one of these products and explore the 
ways in which it can be used. 

For you, the student, these computing resources have an effect on how you should study 
differential equations. To become confident in using differential equations, it is essential to 
understand how the solution methods work, and this understanding is achieved, in part, by 
working out a sufficient number of examples in detail. However, eventually you should plan 
to utilize appropriate computational tools to complete many of the routine (often repetitive) 
details, while you focus on the proper formulation of the problem and on the interpretation 
of the solution. Our viewpoint is that you should always try to use the best methods and tools 
available for each task. In particular, you should strive to combine numerical, graphical, and 
analytical methods so as to atain maximum understanding of the behavior of the solution 
and of the underlying process that the problem models. You should also remember that some 

tasks can best be done with pencil and paper, while others require the use of some sort of 
computational technology. Good judgment, and experience, is often needed in selecting an 
effective combination. 

Historical Background, Part Ill: Recent and Ongoing Advances. The numerous 
differential equations that resisted solution by analytical means led to the investigation of 
methods of numerical approximation (see Chapter 8). By 1900 fairly effective numerical 
integration methods had been devised, but their implementation was severely restricted by 
the need to execute the computations by hand or with very primitive computing equipment. 
Since World War II the development of increasingly powerful and versatile computers has 
Vastly enlarged the range ol problems that can be investigated effectively by numerical 
methods. Extremely relined and robust numerical integrators were developed during the same 

21 
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period and now are readily available, even on smartphones and other mobile devices. These 
technological advances have brought the ability to solve a great many significant problems 
within the reach of individual students. 

Another characteristic of modern differential equations is the creation of geometric or 
topological methods, especially for nonlinear equations. The goal is to understand at least the 
qualitative behavior of solutions from a geometrical, as well as from an analytical, point of 
view. If more detailed information is needed, it can usually be obtained by using numerical 
approximations. An introduction to geometric methods appears in Chapter 9. We conclude 
this brief historical review with two examples thatillustrate how computational and real-world 
experiences have motivated important analytical and theoretical discoveries. 

In 1834 John Scott Russell (1808-1882), a Scottish civil engineer, was conducting 
experiments to determine the most efficient design for canal boats when he noticed that 
"when the boat suddenly stopped" the water being pushed by the boat "accumulated round 
the prow of the vessel in a state of violent agitation, then suddenly leaving it [the boat] 
behind, (the water] rolled forward with great velocity, assuming the form of a large solitary 
elevation, a rounded, smooth and well-defined heap of water."ó Many mathematicians did 
not believe that the solitary traveling waves reported by Russell existed. These objections 
were silenced when the doctoral dissertation of Dutch mathematician Gustav de Vries 
(1866-1934) included a nonlinear partial differential equation model for water waves in a 
shallow canal. Today these equations are known as the Korteweg-de Vries (KdV) equations. 
Diederik Johannes Korteweg (1848-1941) was de Vries's thesis advisor. Unknown to eithr 
Korteweg or de Vries, their Korteweg-de Vries model appeared as a footnote ten years earlier 
in French mathematician Joseph Valentin Boussinesq's (1842-1929) 680-page treatise Essai 
sur la théorie des eaux courantes. The work of Boussinesg and of Korteweg and deVries 
remained largely unnoticed until two Americans, physicist Norman J. Zabusky (1929-) and 
mathematician Martin David Kruskal (1925-2006), used computer simulations to discover, 
in 1965, that all solutions of the KdV equations eventually consist of a finite set of localized 
traveling waves. Today, nearly 200 years after Russell's observations and 50 years after the 
computational experiments of Zabusky and Kruskal, the study of "solitons" remains an active 
area of differential equations research. Other early contributors to nonlinear wave propagation 
include David Hilbert (German, 1862-1943), Richard Courant (German-American, 1888 
1972), and John von Neumann (Hungarian-American, 1903-1957); we will encounter some 
of these ideas again in Chapter 9. 

Computational results were also an essential element in the discovery of chaos theory." 
In 1961, Edward Lorenz (1917-2008), an American mathematician and meteorologist at the 
Massachusetts Institute of Technology, was developing weather prediction models when he 
observed different results upon restarting a simulation in the middle of the time period using 
previously computed results. (Lorenz restarted the computation with three-digit approximate 
solutions, not the six-digit approximations that were stored in the computer.) In 1976 the 
Australian mathematician Sir Robert M. May (1938-) introduced and analyzed the logistic 
map, showing that there are special values of the problem's parameter where the solutions 
undergo drastic changes. The common trait that small changes in the problem produce large 
changes in the solution is one of the defining characteristics of chaos. May's logistic map is 
discussed in more detail in Section 2.9. Other classical examples of what we now recognize as 
"chaos" include the work by French mathematician Henri Poincaré (1854-1912) on planetary 
motion and the studies of turbulent fluid flow by Soviet mathematician Andrey Nikolaevich 
Kolmogorov (1903-1987), American mathematician Mitchell Feigenbaum (1944-), and many 
others. In addition to these and other classical examples of chaos, new examples continue to 
be found. 

Solitons and chaos are just two of many examples where computers, and especially 
computer graphics, have given a new impetus to the study of systems of nonlinear differential 
equations. Other unexpected phenomena (Section 9.8), such as strange attractors (David 
Ruelle, Belgium, 1935-) and fractals (Bernoit Mandelbrot, Poland, 1924-2010), have been 

"Report on Waves," in Proceedings of the Fourteenth Meeting of the British Association for the Advancement of 
Science, 1845, pp. 311-390, plus plates 47-57, http://www.macs.hw.ac. uk/~chris/Scot-Russell/SR44.pdí. 



aIscovered, are being intensively studied. and are leading to important new insights in a Vaniety of applications. Although it js an old subiect about which much is known, the study 
OT differential equations in the twenty-frst century remains a fertile source of fascinating and important unsolved problems. 

Problems 
In each of Problems 1 through 4, determine the order of the given 
differential equation; also state whether the equation is linear or 
nonlinear. 
1. 2y' 

3. 

2. (1 +y2)y,dy 

4. 

dt2 T dt t2y = sin(t) 
dy 

d'y 
dt2 

d'y dy d²y 
+ 

d(2 

d13 

+ +y = e 

5. y"-y= 0; 

+ sin(t + y) = sin(t) 

dy 
dt2 dt 

In each of Problems 5 through 10, verify that each given function is a 
solution of the differential equation. 

10. y' -2ty = 1; 

+ 

yi() = e', y(t) = cosh(t) 
6. y" + 2y' - 3y = 0; yi() = e3, 

8. y" + 4y" + 3y = t; 
9. t2y" + 5ty' + 4y = 0, 

11. y' + 2y = 0 
12. y" +y'-6y = 0 
13. y'"- 3y" + 2y' = 0 

+y=1 

15. 12y' � 4ty' + 4y = 0 

16. uyy t uyy t Ugz = 0 

18. u, + uu,=l+u 

yi() = t/3, 
y (1) = t > 0; 

In each of Problems 1l through 13, determine the values of r for which 
the given differential equation has solutions of the form y = ert. 

f Jo 

19. u,rx t uy = 0; 
u,(x, y)= In(x' +y') 

20. au, = u,; 
u,(x, 1)=e-aa*I sin(dx). 

y2(t) = e! 

In each of Problems 14 and 15, determine the values of r for which the 
given differential equation has solutions of the form y = t for t > 0. 
14. 1y" + 4ty' + 2y = 0 

17. ugxXx t 2uxxyy t uyyyy 0 

e-ds + e 

In each of Problems 16 through 18, determine the order of the given 
partial differential equation; also state whether the equation is linear 
or nonlinear. Partial derivatives are denoted by subscripts. 

y2(t) = e + t/3 

, y(t) = t2 In(t) 

In each of Problems 19 through 21, verify that each gjven function is a 
solution of the given partial differential equation. 

u, (x, 1)=eal sin(x), 

uj(x, y) = cos(t) cosh(y), 

2a real constant 

1.3 Classification of Differential Equations 

21. a²uyy = Uii u, (x, t) = sin(1x) sin(Aat), 
u,(x, t) = sin(% � at), a real constant 

22. Follow the steps indicated here to derive the equation of motion of 
a pendulum, equation (12) in the text. Assume that the rod is rigid and 
weightless, that the mass is a point mass, and that there is no friction 
or drag anywhere in the system. 

23 

a. Assume that the mass is in an arbitrary displaced position, 
indicated by the angle 0. Drawa free-body diagram showing the 
forces acting on the mass. 

b. Apply Newton's law of motion in the direction tangential to 
the circular arc on which the mass moves. Then the tensile force 
in the rod does not enter the equation. Observe that you need to 
find the component of the gravitational force in the tangential 
direction. Observe also that the linear acceleration, as opposed 
to the angular acceleration, is Ld'e/dt², where L is the length of 
the rod. 

C. Simplify the result fromn part b to obtain equation (12) in the 
text. 

23. Another way to derive the pendulum equation (12) is based on 
the principle of conservation of energy. 

a. Show that the kinetic energy T of the pendulum in motion is 

T-zm): 
b. Show that the potential energy V of the pendulum, relative to 
its rest position, is 

V= mgL(1 � cos(O). 

c. By the principle of conservation of energy, the total energy 
E =T+ V is constant. Calculate dE/dt, set it equal to zero, and 
show that the resulting equation reduces to equation (12). 

24. A third derivation of the pendulum equation depends on the 
principle of angular momentum: The rate of change of angular 
momentum about any point is equal to the net external moment about 
the same point. 

a. Show that the angular momentum M, or moment of 
momentum, about the point of support is given by M= 
mi?de/dt. 

b. Set dM/dt equal to the moment of the gravitational force, and 
show that the resulting equation reduces to equation (12). Note 
that positive moments are counterclockwise. 

7. ty' -y =t'; y= 3t + 12 
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