
CHAPTER 2 

First-Order Differential 
Equations 
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This chapter deals with differential equations of first order 

2.1 

dy 
dt 

where f is a given function of two variables. Any differentiable functiony = ¢(0) that satisties 
this equation for all t in some interval is called a solution, and our objective is to determine 
whether such functions exist and, if so, to develop methods for finding them. Unfortunately. 
for an arbitrary function f, there is no general method for solving the equation in terms of 
elementary functions. Instead, we will describe several methods, each of which is applicable 
to a certain subclass of first-order equations. 

The most important of these are linear equations (Section 2.1), separable equations 
(Section 2.2), and exact equations (Section 2.6). Other sections of this chapter describe some 
of the important applications of first-order differential equations, introduce the idea of approx 
imating a solution by numerical computation, and discuss some theoretical questions related 
to the existence and uniqueness of solutions. The final section includes an example of chaotic 
solutions in the context of first-order difference equations, which have some important points 
of similarity with differential equations and are simpler to investigate. 

Linear Differential Equations; Method 
of Integrating Factors 

=fU,y), 

dy 
dt 

If the function f in equation (1) depends linearly on the dependent variable y, then equation (1 ) 
is a first-order linear differential equation. In Sections 1.1 and 1.2 we discussed a restricted 
type of first-order linear differential equation in which the coefficients are constants. A typical 
example is 

dy 
dt 

where a and b are given constants. Recall that an equation of this form describes the motion 
of an object falling in the atmosphere. 

(1) 

=-ay + b, 

Now we want to consider the most general first-order linear differential equation, which 
is obtained by replacing the coefficients a and b in equation (2) by arbitrary functions of t. We 
will usually write the general first-order linear differential equation in the standard form 

+ p()y = g(t), 

P) 
dt 

(2) 

where p and g are given functions of the independent variable t. Sometimes it is more 
convenient to write the equation in the form 

+Q)y = G(), 

(3) 

(4) 



Where P, Q, and G are given, Of course, as long as P(t)#0, you can convert equation (4) to equation (3) by dividing both sides of equation (4) by P(). 
n some cases it is possible to solve a first-order linear differential equation immediately 

by integrating the equation, as in the next example. 

EXAMPLE 2.1,1 

Solve the differential equation 

(4+ )+ 21y = 4t. 
Solution The left-hand side of equation (5) is a linear combination of dy/dt and y, a combina 
tion that also appears in the rule from calculus for differentiating a product. In fact, 

(4+ 2) dy 
di 

it follows that equation (5) can be revwritten as 

EXAM PLE 2.1.2 

(4+y) = 4. 

+ 21y = (4+ )»): 

(4+ )y = 2 + c, 

y= 

This is the general solution of equation (5). 

Thus, even though y is unknown, we can integrate both sides of equation (6) with respect to t, 
thereby obtaining 

where c is an arbitrary constant of integration. Solving for y, we find that 

d 

dy 

212 
4+ t2 

dt 

Find the general solution of the differential equation 

2.1 Linear Differential Equations; Method of Integrating Factors 

4+ t2 

Unfortunately, most first-order linear differential equations cannot be solved as illustrated 
in Example 2.1.1 because their left-hand sides are not the derivative of the product of y and 
some other function. However, Leibniz discovered that if the differential equation is multi 
plied by a certain function (), then the equation is converted into one that is immediately 
integrable by using the product rule for derivatives, just as in Example 2.1.1. The function u(t) 
is called an integrating factor and our main task in this section is to determine how to find 
it for a given equation, We will show how this method works first for an example and then for 
the general first-order linear differential equation in the standard form (3). 

dul0) 
dt 

(5) 

d 

(6) 

Draw sorme representative integral curves; that is, plot solutions corresponding to several values 
of the arbitrary constant c. Also find the particular solution whose graph contains the point (0, 1). 

Solution The first step is to multiply equation (9) by a function u(t), as yet undeternmined; thus 

dt 

ju). 

(7) 

(8) 

The question now is whether we can choose u() so that the left-hand side of equation (10) is the 
derivative of the product u(1)y. For any differentiable function u() we have 

(9) 

(10) 

Thus the left-hand side of equation (10) and the right-hand side of equation (11) are identical. 
Drovided that we choose () to satisfy 

(11) 

(12) 
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Our search for an integrating factor will be successful if we can find a solution of equa 
tion (12). Perhaps you can readily identify a function that satisfies cquation (12): VWhat well 
known function from calculus has a derivative that is equal to one-half times the original function? 
More systematically, rewrite equation (12) as 

which is equivalent to 

Then it follows that 

or 

1 du(t) 

u(:) dt 

d 

dt In |(0)| = 

In |()| =5+C, 

d 

H(t) = cet/2 

Now we return to equation (9), multiply it by the integrating actor et/2, and obtain 

The function u(1) given by equation (14) is an integrating factor for equation (9). Since we do 
not need the most general integrating factor, we will choose c to be 1 in equation (14) and use 
u(t) = et/2 

By integrating both sides of equation (16), we obtain 

By the choice we have made of the integrating factor, the left-hand side of equation (15) is the 
derivative of et/2y, so that equation (15) becomes 

efl'y=e/o +c. 

y=e+ ce-t/2, 

(13) 

(14) 

y-e+e-/, 

(15) 

where c is an arbitrary constant. Finally, on solving equation (17) for y, we have the general 
solution of equation (9), namely. 

FIGURE 2.1.1 Direction field and integral curves of y' + y=es,; the 
green curve passes through the point (0, 1). 

6t 

(16) 

(17) 

To find the solution passing through the point (0, 1), we set = 0 and y= l in equation (18), 
obtaining 1 = 3/5 + c. Thus c = 2/5, and the desired solution is 

(18) 

Figure 2.1.1 includes the graphs of equation (18) for several values of c with a direction field 
in the background. The solution satisfying y(0) = 1 is shown by the green curve. 

(19) 



Let us now extend the method of integrating factors to equations of the form 

(20) 

where a is a given constant and g(t) is a given function. Proceeding as in Example 2.1.2, We 
find that the integrating factor u(t) must satisty 

or 

dy 

EXAMPLE 2.1.3 

dt 

d 

dt 

rather than equation (12). Thus the integrating factor is u() = e", Multiplying equation (20) 
by u(t), we obtain 

or 

+ ay = g), 

du 

By integrating both sides of equation (22), we find that 

dt 

+ aely = elg(), 

d 

= au, 

etly =e"g() dt + c, 

dy 
dt 

where cis an arbitrary constant. For many simple functions g(t), we can evaluate the integral in 
equation (23) and express the solutiony in terms of elementary functions, as in Example 2.1.2. 
However, for more complicated functions g(t), it is necessary to leave the solution in integral 
form. In this case 

Find the general solution of the differential equation 

esg(s) ds + ce-at. 

Note that in equation (24) we have used s to denote the integration variable to distinguish it 
from the independent variable t, and we have chosen some convenient value to as the lower 
limit of integration. (See Theorem 2.4.1.) The choice of to determines the specific value of the 
constant c but does not change the solution. For example, plugging t to into the solution 

formula (24) shows that c = y(todeato, 

- 2y = 4t 

and plot the graphs of several solutions. Discuss the behavior of solutions as t ’ o. 

e--2e-y = 4e-te , 

2.1 Linear Differential Equations; Method of Integrating Factors 

= 4e-2 �e 

Then, by integrating both sides of this equation, we have 

Solution Equation (25) is of the form (20) with a= -2; therefore, the integrating factor is 
uÚ) = e-. Multiplying the differential equation (25) by (t), we obtain 

ey= -2e-21 4 Ste+e 

7 

(21) 

(22) 

+ c, 

y=-it;t+ cet, 

(23) 

(24) 

(25) 

where we have used integration by parts on the last term in equation (26). Thus the general 
solution of equation (25) is 

(26) 

(27) 
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Figure 2.1.2 shows the direction field and graphs of the solution (27) for several values of 
c. The behavior of the solution for large values of t is determined by the term ce, If c #0, then 

the solution grows exponentially large in magnitude, with the same sign as c itself. Thus the solu 
tions diverge as becomes large. The boundary between solutions that ultimately grow positively 
and those that ultimately grow ncgatively occurs when c = 0. If we substitute c=0 into equa 
tion (27) and then set = 0, we find that y = -7/4 is the separation point on the y-axis. Note 

7 
that for this initial value, the solution is y = -+;it grows positively, but linearly rather than 
exponcntially. 

0.5 

FIGURE 2.1.2 Direction field and integral curves of y'-2y = 4- t. 

Now we return to the general first-order linear differential equation (3) 

and consequently 

Hence 

dy 
dt 

+ p()y= g(), 

where p and g are given functions. To determine an appropriate integrating factor, we multiply 
equation (3) by an as yet undetermined function u(t), obtaining 

dt K) + p(t)u(t)y = u()g(0). (28) 

Following the same line of development as in Example 2.1.2, we see that the left-hand side of 
equation (28) is the derivative of the product u(t)y, provided that «(t) satisfies the equation 

du(t) 
dt 

1f we assume temporarily that u(t) is positive, then we have 

= p()u(t). 

1 du() 
u(t) dt 

= Pt), 

1.5 

In lu)) = p() dt + k. 

H) = exp P() dt. 

2 

By choosing the arbitrary constant k to be zero, we obtain the simplest possible function for . 
namely, 

Note that u) is positive for all t, as we assumed. Returning to equation (28), we have 

(u(0y) = A0g(). 

+ c, 

(29) 

(30) 

(31) 

(32) 



where c is an arbitrary constant. Sometimes the integral in equation (32) can be evaluated in 
terms of elementary functions. However, in general this is not possible, so the general solution 
of equation (3) is 

EXAMPLE 2.1.4 

Solve the initial value problem 

y= 

Where again t, is some convenient lower limit of integration. Observe that equation (33) 
lnvolves two integrations, one to obtain u(t) from equation (30) and the other to determine 
y from equation (33). 

ty' + 2y = 412, 

and therefore 

y(1) = 2. 

() = 

Solution In order to determine p(t) and g() correctly, we must first rewrite equation (34) in 
the standard form (3). Thus we have 

2 y'+fy= 4, 

On multiplying equation (36) by u(t) = t², we obtain 

so p(t) = 2/t and g(t) = 41. To solve equation (36), we first compute the integrating factor u(t): 

tty' + 2ty = (y) = 41, 

where c is an arbitrary constant. It follows that, for t > 0, 

y = t2 

y=+ 

2.1 Linear Differential Equations; Method of Integrating Factors 

C 

(33) 

(34) 

is the general solution of equation (34). Integral curves of equation (34) for several values of c are 
shown in Figure 2.1.3. 

y(1) = Yo» 

then c = yo -1 and the solution (38) becomes 

(35) 

To satisfy initial condition (35), set t = l andy = 2 in equation (37):2 =1+ c, so c = 1; thus 

t>0 

y= |l4o-1 
12 

(36) 

(37) 

is the solution of the initial value problem (24), (25). This solution is shown by the green curve 
in Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as t ’ 0 
from the right. This is the effect of the infinite discontinuity in the coefficient p(t) at the origin. It 
is important to note that while the function y = + 1/P for t < 0 is part of the general solution 
of equation (34), it is not part of the solution of this initial value problem. 

This is the first example in which the solution fails to exist for some values of t. Again, this 
is due to the infinite discontinuity in p(t) at t = 0, which restricts the solution to the interval 

0 <t<0. 
Looking again at Figure 2.1.3, we see that some solutions (those for which c> 0) are asymp 

totic to the positive y-axis as t ’0 from the right, while other solutions (for which c<0) are 

asymptotic to the negative y-axis. If we generalize the initial condition (35) to 

(38) 

(39) 

(40) 

Note that when yo= 1, so c =0, the solution is y = (', which remains bounded and differentiable 
even at l=0.(This is the red curve in Figure 2.1.3.) 

31 

() 

the 



32 CHAPTER 2 First-Order Differential Equations 

As in Example 2.1.3, this is another instance where there is a critical initial valuc. namely. yo=l. 
that separates solutions that behave in one way from others that behave quite differently. 

EXAMPLE 2.1.5 

Solve the initial value problem 

3 

2 

1 

FIGURE 2.1.3 Integral curves of the differential equation ty' + 2y = 4*: 
the green curve is the particular solution with y(1) = 2. The red curve is 
the particular solution with y(1) = 1. 

2y' + ty =2, 

y(0) = 1. 

SO C = 1, 

y+;y=1. 

Solution To convert the differential equation (41) to the standard form (3), we must divide 
equation (41) by 2, obtaining 

(1,2) 

ety = |e'la dt + e. 

Thus p(t) = t/2, and the integrating factor is p(t) = exp(t²/4). Then multiply equation (43) by 
u(t), so that 

etl'y = el* ds + c, 

(41) 

The left-hand side of equation (44) is the derivative of ey, so by integrating both sides of 
equation (44), we obtain 

(42) 

y=etla | el ds + ce-la, 

(43) 

The integral on the right-hand side of equation (45) cannot be evaluated in terms of the usual ele 
mentary functions, so we leave the integral unevaluated. By choosing the lower limit of in tegration 
as the initial point = 0, we can replace equation (45) by 

1=eeh ds + cel 
=0+ c, 

(44) 

where c is an arbitrary constant. It then follows that the general solution y of equation (41) is 
given by 

(45) 

(46) 

To determine the particular solution that satisfies the initial condition (42), set t = 0 and y =l in 
equation (47): 

(47) 



The main purpose of this example is to illustrate that sometimes the solution must be left 
In terms of an integral. This is usually at most a slight inconvenience, rather than a serious 
obstacle. For a given value of t, the integral in equation (47) is a definite integral and can be 

approximated to any desired degree of accuracy by using readily available numerical integrators. 
Ey repeating this process for many values of t and plotting the results, you can obtain a graph of a 
Solution. Alternatively you can use a numerical approximation method, such as those discussed 
in Chapter 8, that proceed directly from the differential equation and need no expression for the 
solution. Software packages such as Maple, Mathematica, MATLAB, and Sage readily execute 
such procedures and produce graphs of solutions of differential equations. 

Figure 2.1.4 displays graphs of the solution (47) for several values of c. The particular solu 
tion satisfying the initial condition y(0) = l is shown in black. From the figure it may be plausible 
to conjecture that all solutions approach a limit ast ’ o. The limit can also be found analytically 
(see Problem 22). 

Problems 
In each of Problems 1 through 8: 

FIGURE 2.1.4 Integral curves of 2y' + ty = 2; the green curve is the particu 
lar solution satisfying the initial condition y(0) =1, 

G Draw a direction field for the given differential equation. 
b. Based on an inspection of the direction field, describe how 
solutions behave for large t. 

1. y' + 3y = 1+e 

c. Find the general solution of the given differential equation, 
and use it to determine how solutions behave as t ’ oo. 

3. y'+y= te! +1 

5. y'-2y = 3e' 

7. y'+y= 5sin(21 ) 

9. y' -y= 2le. 

3 

11. y' +fy 
12. y' +(I+ l)y =1, 

y(0) = I 

2. y'-2y = (e 

In each of Problems 9 through 12, find the solution of the given initial 
value problem. 

4 

Jn cach of Problems 13 and 14: 

4. y' +;y = 3 cos(21), I>0 

6. 1y'- y = t'e!, t>0 
8. 2y' + y= 312 

10. y' + 2y = te-, 

y(r) = 0, >0 

yln 2) = 1, 1>0 

2.1 Linear Differential Equations; Method of Integrating actors 

y(1) = 0 

5 6 t 
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a. G Draw a direction field for the given differential equation. 
How do solutions appear to behave as t becomes large? Does the 
behavior depend on the choice of the initial value a? Let a, be the 
value of a for which the transition from one type of behavior to 
another occurs. Estimate the value of a,. 

b. Solve the initial value problem and find the critical value an 
exactly. 

c. Describe the behavior of the solution corresponding to the 
initial value ao. 

13. y'-y= 2 cos(t), y(0) = a 14. 3y'-2y = e/2, y(0) = a 
In each of Problems 15 and 16: 

a G Drawa direction field for the given differential equation. 
How do solutions appear to behave as t ’ 0? Does the behavior 
depend on the choice of the initial value a? Let a, be the criti 
cal value of a, that is, the initial value such that the solutions for 
a< ay and the solutions for a> a, have diferent behaviors as 
(’ 0. Estimate the value of a,. 

b. Solve the initial value problem and find the critical value a) 
exactly. 
c. Describe the behavior of the solution corresponding to the 
initial value y. 

=, 
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15. ty' +(t + 1)y = 2te-!, 

16. (sin(1))y' + (cos(t) )y = e', 
y(1) = a, t>0 

17. GConsider the initial value problem 

y' +;y=2 cost(). 

y(1) =a, 0<t<I 

Find the coordinates of the first local maximum point of the solution 
for t > 0. 

y'+fy=1-s 
18. N Consider the initial value problem 

19. Consider the initial value problem 

Find the value of y, for which the solution touches, but does not cross, 
the 1-axis. 

y(0) =-1. 

y'+= 3+ 2 cos(21), y(0) = 0. 

a. Find the solution of this initial value problem and describe its 
behavior for larget. 

remains finite as t ’ o. 

y(0) = yo 

b. N Determine the value of t for which the solution first 
intersects the liney = 12. 

y'-y=1+3 sin(t), 

20. Find the value of y, for which the solution of the initial value 
problem 

21. Consider the initial value problem 

y'-y= 3t + 2e, 

y(0) = yo 

y(0) = yo 
Find the value of yo that separates solutions that grow positively as 
I’ o from those that grow negatively. How does the solution that 
corresponds to this critical value of y, behave as t ’ o? 

22. Show that all solutions of 2y' + ty= 2 [equation (41) of the text] 
approach a limit as t ’ o, and find the limiting value. 
Hint: Consider the general solution, equation (47). Show that the first 
term in the solution (47) is indeterminate with form 0· o. Then, use 

l'Hópital's rule to compute the limit as t o. 

23. Show that if a and 2 are positive constants, and b is any real 
number, then every solution of the equation 

2.2 

has the property that y ’0 as t’ o0. 
Hint: Consider the cases a= l and a# separately. 

In each of Problems 24 through 27., construct a first-order linear differ 

ential equation whose solutions have the reguired behavior as t ’ o. 

Then solve your equation and confirm that the solutions do indeed 

have the specified property. 
24. All solutions have the limit 3 as t ’ 0. 

y'+ ay = be-d 

25. All solutions are asymptotic to the line y =3-tas t ’ oo. 

26. All solutions are asymptotic to the liney= 2t-5 as t o. 

27. All solutions approach the curve y = 4- ( as t ’ 0. 
28. Variation of Parameters. Consider the following method of 
solving the general linear equation of first order: 

a. Ifg(t) = 0 for all t, show that the solution is 

where A is a constant. 

y'+ p()y = g(). 

29. y' -2y = 'e2 

y=Aup-fp) d), 

b. If g(t) is not everywhere zero, assume that the solution of 
equation (48) is of the form 

where A is now a function of t. By substituting for y in the given 
differential equation, show that A(t) must satisfy the condition 

dy 
d 

c. Find A(t) from equation (51). Then substitute for A() in 
equation (50) and determine y. Verify that the solution obtained 
in this manner agrees with that of equation (33) in the text. This 

technique is known as the method of variation of parame 
ters; it is discussed in detail in Section 3.6 in connection with 
second-order linear equations. 

= ay + b, 

(48) 

In each of Problems 29 and 30, use the method of Problem 28 to solve 
the given differential equation. 

Separable Differential Equations 

(49) 

30. y+= cos(21). 

(50) 

(51) 

In Section 1.2 we used a process of direct integration to solve first-order linear differential 
equations of the form 

t>0 

(1) 

where a and b are constants. We will now show that this process is actually applicable to a much larger class of nonlinear differential egquations. 
We will use x, rather than t, to denote the independent variable in this section for two reasons. In the first place, different letters are frequently used for the variables in a differential cquation, and you should not become too accustomed to using a single pair. In particular, x often occurs as the independent variable. I'urther, we want to reserve t for another purpose later in the section. 
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