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15. ty' +(t + 1)y = 2te-!, 
16. (sin(t)y' + (cos())y = e, 

1 

y(1) = a, t>0 

17. GConsider the initial value problem 

y+;y=2 cos(), 

y(1) = a, 0<t <I 

Find the coordinates of the first local maximum point of the solution 
for t > 0. 

y+fy=1-. 
18. N Consider the initial value problem 

19. Consider the initial value problem 

Find the value of y, for which the solution touches, but does not cross, 
the (-axis. 

y'+y=3+ 2 cos(21). 

y(0) =-1. 

remains finite as t ’ o. 

a. Find the solution of this initial value problem and describe its 
behavior for large t. 

y'-y= l+3 sin( ), 

y(0) = Yo 

b. N Determine the value of t for which the solution first 
intersects the line y = 12. 

20. Find the value of y, for which the solution of the initial value 
problem 

21. Consider the initial value problem 

V(0) = 0. 

y'-y= 31 + 2e', 

y(0) = Yo 

y(0) = Yo 

Find the value of yo that separates solutions that grow positively as 
t’ o from those that grow negatively. How does the solution that 
corresponds to this critical value of y, behave as t ’ o? 

22. Show that all solutions of 2y' + ty = 2 [equation (41) of the text) 
approach a limit as t ’ o, and find the limiting value. 

Hint: Consider the general solution, equation (47). Show that the first 
term in the solution (47) is indeterminate with form 0· o. Then, use 
l'Hópital's rule to compute the limit as t - 0. 

23. Show that if a and are positive constants, and b is any real 
number, then every solution of the equation 

2.2 

has the property that y ’0 as t’ 0. 
Hint: Consider the cases a = A and a # separately. 
In each of Problems 24 through 27, construct a first-order linear ditfer 

ential equation whose solutions have the required behavior as t ’ o. 

Then solve your equation and confirm that the solutions do indeed 

have the specified property. 

y' + ay = be-à 

24. All solutions have the limit 3 as t ’ o. 
25. All solutions are asymptotic to the line y = 3-t as t ’ 0. 

26. All solutions are asymptotic to the line y = 2t - 5 ast ’ 0. 

27. All solutions approach the curve y = 4- t' ast ’ co. 
28. Variation of Parameters. Consider the following method of 

solving the general linear equation of first order: 

a. Ifg(t) = 0 for all t, show that the solution is 

where A is a constant. 

y' + p()y = g(). 

b. If g(t) is not everywhere zero, assume that the solution of 
equation (48) is of the form 

29. y' - 2y = te 

y- At)exp(-fP)ai), 

(48) 

where A is now a function of t. By substituting fory in the given 
differential equation, show that A(t) must satisfy the condition 

dy 
dt 

(49) 

C. Find A(t) from equation (51). Then substitute for A(t) in 
equation (50) and determiney. Verify that the solution obtained 
in this manner agrees with that of equation (33) in the text. This 
technique is known as the method of variation of parame 
ters; it is discussed in detail in Section 3.6 in connection with 
second-order linear equations. 

Separable Differential Equations 

= ay + b, 

(50) 

In each of Problems 29 and 30, use the method of Problem 28 to solve 
the given differential equation. 

(51) 

30. y' +y = cos(21), t>0 

In Section 1.2 we used a process of direct integration to solve first-order linear differential 
equations of the form 

(1) 

where a and b are constants. We will now show that this process is actually applicable toa 
much larger class of nonlinear differential equations. 

We will use x, rather than , to denote the independent variable in this section for two 
reasons. In the first place, different letters are frequently used for the variables in a differential 
equation, and you should not become too accustomed to using a single pair. In particular, x 
often occurs as the independent variable. lurther, we want to reserve t for another purpose 
later in the section. 



The general first-order differential equation is 

To identify this class of equations, we first rewrite equation (2) in the form 

Linear differential equations were considered in the preceding section, but if equation (2) is nonlinear, then there is no universally applicable method for solving the equation. Here, we consider a subclass of first-order equations that can be solved by direct integration. 

dy 
dx 

EXAMPLE 2.2.1 

=f(x,y). 

M(x, y) + N(X, y)" =0. 

Show that the equation 

It is always possible to do this by setting M(x, y) = -f(x, y) and N(x, y) =1, but there may be other ways as well. When M is a function of x only and N is a function of y only, then equation (3) becomes 

Such an equation is said to be separable, because if it is written in the differential form 

M(x) + N(y) = 0. 

dx 

M(x) dx + N) dy = 0, 

Solution Ifwe write equation (6) as 

or 

then, ifyou wish, terms involving each variable may be placed on opposite sides of the equation. The diferential form (5) is also more symmetric and tends to suppress the distinction between independent and dependent variables. 

is separable, and then find an equation for its integral curves. 

For example, if f(y) =y- y'/3, then 

A separable equation can be solved by integrating the functions M and N. We illustrate 
the process by an example and then discuss it in general for equation (4). 

dy x? 
dx 1-y2 

-*+(1-y) 
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d 

dx =0, 
then it has the form (4) and is therefore separable. Recall from calculus that if y is a function of x, 
then by the chain rule, 

dy 
dx 

(2) 

(6) 

(7) 

(3) 

Thus the second term in equation (7) is the derivative with respect to x of y - y³/3, and the first 
term is the derivative of -x*/3. Thus equation (7) can be written as 

(4) 

(5) 
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Therefore, by integrating (and multiplying the result by 3), we obtain 

where c is an arbitrary constant. 
Equation (8) is an equation for the integral curves of equation (6). A direction field and sev 

eral integral curves are shown in Figure 2.2.1. Any differentiable functiony = (x) that satisfies 

equation (8) is a solution of equation (6). An equation of the integral curve passing through a par 

ticular point (x0. yo) can be found by substituting x, and y, for x and y, respectively, in equation (8) 

and determining the corresponding value of c. 

-2 

and equation (4) becomes 

FIGURE 2.,2.1 Direction field and integral curves of y' =x/(1-y²). 

-x³+ 3y -y' =c, 

H(«) = M(), 

Essentially the same procedure can be followed for any separable equation. Returning to 

equation (4), let H, and H, be any antiderivatives of M and N, respectively. Thus 

H,(0)= 

-4 

H() + H{(o) =0. 

Consequently, we can write equation (10) as 
d 

Ify is regarded as a function of x, then according to the chain rule, 
d dy 

dx 

H,()) = NO), 

dx 

H,()+ H(0) = 0. 
By integrating equation (12) with respect to x, we obtain 

(8) 

4 

H, (x) + H,(y) = c, 

(9) 

(10) 

(11) 

(12) 

(13) 

where c is an arbitrary constant. Any differentiable function y = (x) that satisfies equa 
tjon (13) is a solution of equation (4); in other words, equation (13) defines the solution 
implicitly rather than explicitly. In practice, equation (13) is usually obtained from equation (5) 
by integrating the first term with respect to x and the second term with respect to y. The 
justification for this is the argument that we have just given. 



The differential equation (4), together with an initial condition 

c= H,(Xo) + H,(yo). 
Substituting this value of c in equation (13) and noting that 

we obtain 

Lorms an initial value problem. To solve this initial value problem, we must determine the 
appropriate value for the constant c in eauation (13). We do this by setting x = Xo and y = Yo 
in equation (13) with the result that 

H,(%)- H, (x%) = M(s)ds, 

y(xo) = Yo» 

EXAMPLE 2.2.2 

Solve the initial value problem 

dy 
dx 

| M(S)ds + 

H,() - H, (yo) =| N(s)ds, 

3x + 4x +2 
2(y - 1) 

| N()ds = 0. 

Equation (16) is an implicit representation of the solution of the differential equation (4) tht 
also satisfies the initial condition (14). Bear in mind that to determine an explicit formula for 
the solution, you need to solve equation (16) for y as a function of x. Unfortunately, it is often 
impossible to do this analytically; in such cases you can resort to numerical methods to find 
approximate values of y for given values of x. 

and determine the interval in which the solution exists. 

Solution The differential equation can be written as 

y(0) =-1, 

2( - 1)dy = (3x?+ 4x + 2)dx. 

Integrating the left-hand side with respect to y and the right-hand side with respect to x gives 

y²- 2y = x+ 2x?+ 2x + c, 
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y²-2y =x+2x? + 2x +3. 

(14) 

y=1+Vx3+ 2x2 + 2x + 4. 

(15) 

(16) 

(18) 

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial condi 
tion, we substitute x= 0 and y= -l in equation (18), obtaining c = 3. Hence the solution of the 
initial value problem is given implicitly by 

y= «)=1-vx3 + 2x2 + 2x + 4 

(17) 

To obtain the solution explicitly, we must solve equation (19) for y in terms of x. That is a simple 
matter in this case, since equation (19) is quadratic in y, and we obtain 

(19) 

(20) 

Equation (20) gives two solutions of the differential equation, only one of which, however, satisfies 
the given initial condition. This is the solution corresponding to the minus sign in equation (20), 
So we finally obtain 

(21) 

as the solution of the initial value problem (15). Note that if we choose the plus sign by mistake 
in eguation (20), then we obtain the solution of the same differential equation that satisfies the 
initial condition y(0)= 3. Finally, to determine the interval in which the solution (21) is valid, we 
must find the interval in which the quantity under the radical is positive. The only real zero of 
this expression is x = -2, so the desired interval is x > -2. Some integral curves of the differential 
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equation are shown in Figure 2.2.2. The green curve passes through the point (0,-1) and thus is 
the solution of the initial value problem (15). Observe that the boundary of the interval of validity 
of the solution (21) is determined by the point (-2,1) at which the tangent line is vertical. 

2 

-2,1) 

EXAM PLE 2.2.3 

Solve the separable differential equation 

FIGURE 2.2.2 Integral curves of y' = (3x2 + 4x + 2)/2(y-1); the solution 
satisfying y(0) =-1 is shown in green and is valid for x > -2. 

1 

dy 
dx 

Solution Rewriting equation (22) as 

2 

(0, 

4x �x3 

4+ y³ 
and draw graphs of several integral curves. Also find the solution passing through the point (0, 1) 
and determine its interval of validity. 

(4+ y°) dy = (4x - x) dx, 
integrating each side, multiplying by 4, and rearranging the terms, we obtain 

y + 16y + x-8x = c, 

(22) 

(23) 
where c is an arbitrary constant. Any differentiable function y =(x) that satisfies equation (23) 
is a solution of the differential equation (22). Graphs of equation (23) for several values of c are 
shown in Figure 2.2.3. 

y+ 16y + x- 8x² = 17. 

To find the particular solution passing through (0, 1), we set x = 0 and y = l in equation (23) 
with the result that c = 17. Thus the solution in question is given implicitly by 

(24) 
It is shown by the green curve in Figure 2.2.3. The interval of validity of this solution extends on 

either side of the initial point as long as the function remains differentiable. From the figure we 
see that the interval ends when we reach points where the tangent line is vertical, It follows from 
the differential equation (22) that these are points where 4 + y' = 0, or y =(-4)/3 -1.5874. From equation (24) the corresponding values of x are x t3.3488. These points are marked on 
the graph in Figure 2.2.3. 



3.3488/-1/5874) 

FIGURE 2.2.3 Integral curves of y' = (4x-*')/(4+ y³). The solution pass 
ing through (0, 1) is shown by the green curve. 

Note 1: Sometimes a differential equation of the form (2): 

dy 

If the differential equation is 

dy 

dx 

dx 

dx 

dt 

has a constant solution y = yo. Such a solution is usually easy to find because if f(x, y) = 0 for 
some value yo and for all x, then the constant function y = y, is a solution of the differential 
equation (2). For example, the equation 

-3 

dy 
dx 

has the constant solution y = 3. Other solutions of this equation can be found by separating 
the variables and integrating. 

dy 

= f(x,y) 

Note 2: The investigation of a first-order nonlinear differential equation can sometimes be 
facilitated by regarding both x and y as functions of a third variablet. Then 

dx 

(y-3) cos(x) 
1+2y2 

= G(x, y), 

dy/dt 

(3.3488, \15g74) 

dx/dt 

F(, y) 
G(x, y)' 
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dy 
dt 

(25) 

= F(x, y). 

then, by comparing numerators and denominators in equations (26) and (27), we obtain the 
system 

(26) 

(27) 

(28) 

At first sight it may seem unlikely that a problem will be simplified by replacing a single 
equation by a pair of equations, but in fact, the system (28) may well be more amenable to 
investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems of the 
form (28). 

Note 3: In Example 2.2.2 it was not difficult to solve the initial value problem explicitly for 
Vas a function of x. However, this situation is exceptional, and often it will be better to leave 
The solution in implicit form, as in Examples 2.2.1 and 2.2.3. Thus, in the problems below and 
in other sections where nonlinear equations appear, the words "'solve the following differential 
enyation" mean to find the solution explicitly ifit is convenient to do so, but otherwise to find 
an equation defining the solution implicitly. 
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Problems 
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In each of Problems 1 through 8, solve the given differential equation. 
1. y' = 

5. 

3. y'= cos²(x) cos(2y) 

7 

dy 
dx 
dy 

y 

dx 

y+ e' 

In each of Problems 9 through 16: 

17. 

9. y' = (1� 2x)y², 
10. y' = (1- 2x)/y, 
11. xdx + ye *dy = 0, 
12. dr/de = r²/e, 
13. y'=xy°(1+ x²)-1/2, 
14. y' = 2x/(1+2y), 

b. G Plot the graph of the solution. 

r(1) = 2 

a. Find the solution of the given initial value problem in explicit 
form. 

y(0) = -1/6 

y(1) = -2 

y(0) = 1 

C. Determine (at least approximately) the interval in which the 
solution is defined. 

y'= 

2. y' + y² sin(x) =0 

y(2) 

4. xy' = (1- y²)/2 
6 

y(0) = 1 

= 0 

y' = 

1+3x2 

3y2 � 6y' 

Solve the initial value problem 

15. y' = (3x2 - e*)/(2y - 5), 
16. sin(2x) dx + cos(3y) dy = 0, 

Some of the results requested in Problems 17 through 22 can be 
obtained either by solving the given equations analytically or by plot 
ting numerically generated approximations to the solutions. Try to 
form an opinion about the advantages and disadvantages of each 
approach. 

3x2 

dy 
d 

3y2 �4' 

dy 

y(0) = 1 

18. GSolve the initial value problemn 

da 

1+y2 
-x 
y 

and determine the interval in which the solution is valid. 

2-e 

y'3+ 2y' 

y(a/2) = n/3 

Hint: To find the interval of definition, look for points where the 
integral curve has a vertical tangent. 

19. GSolve the initial value problem 

y(0) = 1 

and determine the interval in which the solution is valid. 

y(1) = 0 

Hint: To find the interval of definition, look for points where the 
integral curve has a vertical tangent. 

y'= 2y²+ xy², y(0) = 1 

and determine where the solution attains its minimum value. 
20. GSolve the initial value problem 

y(0) = 0 

and determine where the solution attains its maximum value. 

21. GConsider the initial value problem 

a. Determine how the behavior of the solution as t increases 
depends on the initial value yo. 

3 

b. Suppose that yo = 0.5, Find the time T at which the solution 
first reaches the value 3.98. 

22. G Consider the initial value problem 

y= P4-y) 
1+ 

23. Solve the equation 

Determine how the solution behayes as t ’ 0. 

b. If yo = 2, find the timne T at which the solution first reaches 
the value 3.99. 

C. Find the range of initial values for which the solution lies in 
the interval 3.99 < y<4.01 by the time t = 2. 

dQ 
dt 

dy 

y(0) = yo 

dx 

where a, b, c, and d are constants. 

y(0) = yo > 0. 

24. Use separation of variables to solve the differential equation 

= r(a + bÌ), Q(0) = Qos 

25. N Consider the equation 

where a, b, r, and Qo are constants. Determine how the solution 
behaves as t ’ 0 

dy 
dx 

ay + b 
cy + d 

Homogeneous Equations. If the right-hand side of the equation 
dy/dx = f(x, y) can be expressed as a function of the ratio y/x only, 
then the equation is said to be homogeneous,' Such equations can 
always be transformed into separable equations by a change of the 
dependent variable. Problem 25 illustrates how to solve first-order 
homogeneous equations. 

dy 
dx 

a. Show that equation (29) can be rewritten as 

y- 4x 
x-y 

o/x)-4 
1-(y/x) 

thus equation (29) is homogeneous. 

(29) 

(30) 

1The word "homogeneous" has different meanings in different mathemat 
ical contexts. The homogeneous equations considered here have nothing 
to do with the homogeneous equations that will occur in Chapter 3 and 
elsewhere. 



b. Introduce a new dependent yariable v so that U= y/x, or 
y=xv(x). Express dy/dx in terms of x, v, and du/dx. 
C. Replace y and dy/dx in equation (30) by the expressions 
from part b that involve v and duldx. Show that the resulting 
differential equation is 

du 

Observe that equation (31) is separable. 

U-4 

d. Solve equation (31), obtaining v implicitly in terms of x. 

2.3 

e. Find the solution of equation (29) by replacing v by y/x in 
the solution in part d. 

(31) 

f. Draw a direction field and some integral curves for equa 
tion (29). Recall that the right-hand side of equation (29) actually 
depends only on the ratio y/x. This means that integral curves 
have the same slope at all points on any given straight line 
through the origin, although the slope changes from one line to 

Equations 

26. 

28. 

The method outlined in Problem 25 can be used for any homo 
geneous equation. That is, the substitution y = xu(x) transforms a 
homogeneous equation into a separable equation. The latter equa 
tion can be solved by direct integration, and then replacing v by y/x 
gives the solution to the original equation. In each of Problems 26 
through 31: 

30. 

another. Therefore, the direction field and the integral curves are 
symmetric with respect to the origin. Is this symmetry property 
evident from your plot? 

a. Show that the given equation is homogeneous. 
b. 

dy 
dx 

2.3 Modeling with First-Order Differential Equations 

c. G Draw a direction field and some integral curves. Are they 
symmetric with respect to the origin? 

dy 
dx 

dy 
dx 

Solve the differential equation. 

x'+ xy+y 
x2 

4y- 3x 
2x - y 

x2 �3y? 
2xy 

Modeling with First-Order Differential 

Differential equations are ofinterest to nonmathematicians primarily because of the possibility 
of using them to investigate a wide variety of problems in the physical, biological, and social 
sciences. One reason for this is that mathematical models and their solutions lead to equa 
tions relating the variables and parameters in the problem. These equations often enable you 
to make predictions about how the natural process will behave in various circumstances. It is 
often easy to vary parameters in the mathematical model over wide ranges, whereas this may be 
very time-consuming or expensive, if not impossible, in an experimental setting. Nevertheless, 
mathematical modeling and experiment or observation are both critically important and 
have sonmewhat complementary roles in scientific investigations. Mathematical models are 
validated by comparison of their predictions with experimental results. On the other hand, 
mathematical analyses may suggest the most promising directions to explore experimentally, 
and they may indicate fairly precisely what experimental data will be most helpful. 

In Sections 1.l and 1.2 we formulated and investigated a few simple mathematical models. 
We begin by recapitulating and expanding on some of the conclusions reached in those sections. 
Regardless of the specific field of application, there are three identifiable steps that are always 
present in the process of mathenmatical mnodeling, 

Step 1: Construction of the Model. In this step the physical situation is translated into 
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical 
at this stage is to state clearly the physical principle(s) that are believed to govern the process. 
For example, it has been observed that in some circumstances heat passes fromn a warmer to 
a cooler body at a rate proportional to the temperature difference, that objects move about 
in accordance with Newton's laws of motion, and that isolated insect populations grow at a 
rate proportional to the current population. Each of these statements involves a rate of change 
(derivative) and consequently, when expressed mathematically, leads to a differential equation. 
The differential equation is a mathematical model of the process. 

27. 

29. 

31. 

dy 
dx 

dy 
dx 

dy 
dx 

= 
x²+3y² 

2xy 

4x + 3y 

41 

2x + y 

3y²-x? 
2xy 
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