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Kazhdan’s Property (T)

Let G be a topological group. A unitary representation of G is a
pair (H, π) where H is a Hilbert space and π is a family of unitary
operators πg : H → H indexed by G , satisfying:

(i) (identity) πe = IH.

(ii) (compatibility) πgπh = πgh for all g , h ∈ G .

Also, the map

G ×H → H
(g , ξ) 7→ πgξ

is continuous.
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Kazhdan’s Property (T)

Let (H, π) be a representation of G . A subrepresentation of
(H, π) is a closed G -invariant subspace.

Two representations (H, π) and (K, ρ) are unitarily
equivalent if there exists a unitary operator T : H → K such
that the the following diagram commutes for all g ∈ G ,

H H

K K

πg

T T

ρg

A representation π is (strongly) contained in ρ, and write

π ⊂ ρ

if π is unitarily equivalent to a subrepresentation of ρ.
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Kazhdan’s Property (T)

In the 1948 Godement introduced the notion of weak
containment of representations, which was further developed
by Fell in the early 1960s.

Let G be a topological group. Fix a representation (H, π) and
a vector ξ ∈ H. The continuous function φ : G → C defined
by

φ(g) = 〈πgξ, ξ〉

is called a positive type function associated to π.

A positive type function φ is normalized if φ(e) = 1.

The collection of normalized positive type functions on G is
denoted P1(G ).
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Kazhdan’s Property (T)

Let (H, π) and (K, ρ) be two representations of G . We say π
is weakly contained in ρ, and write

π ≺ ρ

if any function in P1(G ) associated to π can be approximated
uniformly on compact subets of G by convex combinations of
functions in P1(G ) associated to ρ.

In symbols, for any unit vector ξ ∈ H, any compact subset
Q ⊂ G , and any ε > 0, there exist unit vectors η1, . . . , ηn ∈ K
and constants 0 ≤ t1, . . . , tn ≤ 1 with

∑
ti = 1 such that

sup
g∈Q
|〈πgξ, ξ〉 −

n∑
i=1

ti 〈ρgηi , ηi 〉| < ε.
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Kazhdan’s Property (T)

The representation (C, π0) where

π0(g) : C→ C
π0(g)(z) = z

for all g ∈ G is called the trivial representation.

A representation is irreducible if it contains no nontrivial
subrepresentations. For example, π0 is irreducible.

The collection of all irreducible representations of a
topological group G is denoted Ĝ .

Ĝ is a topological space; its topology was studied by Fell in
the early 1960s.
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Kazhdan’s Property (T)

A topological group G has property (T) if {π0} is an open
set in Ĝ .

Property (T) was introduced by Kazhdan in 1967.

Kazhdan was attempting to demonstrate certain lattices were
finitely generated.
Recall: a subgroup Γ of locally compact group G is a lattice if
Γ is discrete and G/Γ carries a G -invariant probability
measure.

Example with property (T): any compact group

Example without property (T): Z
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Kazhdan’s Property (T)

Property (T) is equivalent to the condition:

∀π (π0 ≺ π ⇒ π0 ⊂ π)

A representation (H, π) has almost invariant vectors if for
any compact subset Q ⊂ G and every ε > 0 there exists a
unit vector ξ ∈ H such that

sup
g∈Q
‖πgξ − ξ‖ < ε.
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Kazhdan’s Property (T)

π0 ≺ π if and only if π has almost invariant vectors.

π0 ⊂ π if and only if π has a nonzero invariant vector η, i.e.

∀g ∈ G , πgη = η.

Hence, property (T) is equivalent to the condition: any
representation that has almost invariant vectors has an
invariant vector.
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Groupoids

Definition

A groupoid is a small category with inverses.

G := set of arrows (the groupoid)

G (0) := set of objects (the base space)

The elements of G (0) are called units.

The functions r , s : G → G (0) denote the the range and
source maps. If g : x → y is an arrow, then

s(g) = x and r(g) = y .
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Groupoids

G (2) := {(g , h) : s(g) = r(h)} (composable pairs)

m : G (2) → G (composition)

ι : G → G (inversion)

A topological groupoid is a groupoid equipped with a topology
making m and ι continuous.
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Groupoids

The range fiber at x ∈ G (0) is the set

G x := {g ∈ G : r(g) = x}.

The isotropy group at x ∈ G (0) is the group

G |x := {g ∈ G : s(g) = r(g) = x}.

Examples of groupoids: groups, group bundles, equivalence
relations, group actions.
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Groupoids

Example: Let X be a topological space. The fundamental
groupoid G = Π1(X ) of X :

The base space G (0) = X .

The arrows are all homotopy classes of endpoint preserving
paths in X .

Each G |x is the fundamental group π1(X , x) with basepoint x .
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Groupoids

Let G be a locally compact groupoid. A Haar system is a family
of Radon measures λ = {λx : x ∈ G (0)} on G which satisfy:

(i) Each λx only “sees” G x .

(ii) The measures are translation invariant in a suitable sense.

A Haar system plays the role of a Haar measure on a locally
compact group.
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Continuous Banach Bundles

A continuous Banach bundle over the space X is a continuous
open surjection π : E → X where each fiber Ex := π−1(x) is a
Banach space and the “induced” structure maps

u 7→ λu

(u, v) 7→ u +Ex v

u 7→ ‖u‖Ex

are all continuous where they make sense.
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Continuous Banach Bundles

Example: to each second countable locally compact groupoid
G with Haar system λ and 1 ≤ p <∞ we can associate a
unique continuous Banach bundle over G (0),

Lp(G , λ) :=
⊔

x∈G (0)

Lp(λx).

A continuous Hilbert bundle is a continuous Banach bundle
where every fiber is a Hilbert space.
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Continuous Banach Bundles

Let E and E ′ be continuous Banach bundles over X .

A section or vector field is a function ξ : X → E where
ξx ∈ Ex for each x ∈ X .

The space of continuous sections is denoted C (X ,E ).

The dual of E , denoted E ∗, is the collection of all continuous
maps φ : E → C such that the restriction φx := φ|Ex is linear
for all x ∈ X .

We call the members of E ∗ functionals.
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Continuous Banach Bundles

Definition (C.)

Let E be a continuous Banach bundle over X . The weak*
topology on E ∗ is defined by:

φi → φ in E ∗ :⇔ ∀f ∈ E , φi (f )→ φ(f ) in C.

The weak* topology is the topology of pointwise convergence.

Theorem (C.)

Let E be a continuous Banach bundle over X . Then the set

(E ∗)1 := {φ ∈ E ∗ : ‖φx‖E∗x ≤ 1 for all x ∈ X}

is weak* compact.

Extension of Banach-Alaoglu theorem.

For lack of a better term we will call (E ∗)1 the unit tube.
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Continuous Unitary Representations

Let G be a topological groupoid. A unitary representation of G
is a pair (E , L) where E is a continuous Hilbert bundle over G (0)

and L is a family of unitary operators Lg : Es(g) → Er(g) indexed by
G satisfying:

(i) (identity) Lx = Ix for each x ∈ G (0).

(ii) (compatibility) LgLh = Lgh for each (g , h) ∈ G (2).

Also, the map

{(g , u) : G × E : u ∈ Es(g)} → E

(g , u) 7→ Lgu

is continuous.
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Continuous Unitary Representations

Let (E , L) be a representation of a topological groupoid. A
subrepresentation is a closed G -invariant subbundle.

A unitary equivalence between representations (E , L) and
(E ′, L′) is an isometric isomorphism T : E → E ′ where the
following diagram commutes for all g ∈ G ,

Es(g) Er(g)

E ′s(g) E ′r(g)

Lg

Ts(g) Tr(g)

L′g

(E ′, L′) (strongly) contains (E , L), denoted L ⊂ L′, if (E , L)
is unitarily equivalent to a subrepresentation of (E ′, L′).
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Continuous Unitary Representations

Let G be a topological groupoid.

Let G be a topological groupoid. Fix a representation (E , L)
and a section ξ ∈ C (G (0),E ). The continuous function
φ : G → C defined by

φ(g) = 〈ξr(g), Lgξs(g)〉Er(g)
,

is a positive type function associated to L.

A positive type function φ is normalized if

φ(x) = 1 for all x ∈ G (0)

The collection of normalized positive type functions is denoted
P1(G ).
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Continuous Unitary Representations

Theorem (C.)

Let G be a second countable locally compact groupoid with Haar
system λ. There is an embedding P1(G )→ L1(G , λ)∗.

The space P1(G ) can be viewed as a subset of the locally
convex topological vector space L1(G , λ)∗.

P1(G ) can be endowed with the weak* subspace topology.
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Continuous Unitary Representations

Definition (C.)

The fiberwise compact convergence (f.c.c.) topology on
P1(G ) is the topology where φi → φ in P1(G ) if and only if

∀x ∈ G (0), φi |G x → φ|G x uniformly on compact sets in G x .

Theorem (C.)

Let G be a second countable locally compact groupoid with Haar
system. The weak* and f.c.c. topologies on P1(G ) coincide.

Extension of Raikov’s observation through an adaptation of
Yoshizawa’s argument.
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Continuous Unitary Representations

Definition (Bos)

A unitary representation (E , L) of G is G (0)-irreducible if the
restriction of L to each isotropy group is an irreducible group
representation.

Example: the representation (G (0) × C, L0) where G acts trivially,
called the 1-dimensional trivial representation, is G (0)-irreducible.

Theorem (C.)

Let φ ∈ P1(G ) be associated to the representation (E , L) of G. If
(E , L) is G (0)-irreducible, then φ is an extreme point in P1(G ).
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Weak Containment

Definition (C.)

Let (E , L) and (E ′, L′) be two representations of G . We say (E , L)
is weakly contained in (E ′, L′), and write

L ≺ L′

if any function in P1(G ) associated to L can be approximated f.c.c.
by convex combinations of functions in P1(G ) associated to L′.

Theorem (C.)

Let G be a second countable locally compact groupoid with Haar
system. Suppose L ≺ L′ and L is G (0)-irreducible. Then every
φ ∈ P1(G ) associated to L can be approximated f.c.c. by functions
in P1(G ) associated to L′.
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Weak Containment

A consequence of the Krein-Millman theorem: Let X be a locally
convex topological vector space and let A ⊂ X . Suppose
C = conv(A) is compact. Then

ext(C ) ⊂ A.

Sketch:

X := L1(G , λ)∗

A := all functions in P1(G ) associated to L′

C := conv(A)
weak∗ ⊂ (L1(G , λ)∗)1 is weak* compact

G (0)-irreducibility and L ≺ L′ ⇒ φ ∈ ext(C )

∴ φ ∈ A
weak∗

= A
f .c.c.
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Weak Containment

Let (E , L) be a representation of G . A section ξ : G (0) → E is
unital if

‖ξx‖ = 1 for all x ∈ G (0)

Definition (C.)

We say (E , L) has almost invariant sections if for any x ∈ G (0),
Q ⊂ G x compact, and ε > 0, there exists a unital section
ξ ∈ C (G (0),E ) such that

sup
g∈Q
‖Lgξs(g) − ξx‖Ex < ε.

Kenneth Corea Groupoids and Property (T)



A Definition of Property (T)

Theorem (C.)

Let (E , L) be a representation of a second countable locally
compact groupoid with Haar system. Then the following are
equivalent.

L0 ≺ L.

(E , L) has almost invariant sections.

Theorem (C.)

Let (E , L) be a representation of a topological groupoid G. Then
the following are equivalent:

L0 ⊂ L.

(E , L) contains a continuous unital invariant section η, that is,
Lgηs(g) = ηr(g) for all g ∈ G.
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A Definition of Property (T)

Definition (C.)

Let G be a topological groupoid. We say G has property (T) if
any representation of G that has almost invariant sections has a
continuous unital invariant section.

Examples of groupoids with property (T):

Groups have Kazhdan’s property (T) if and only if they have
groupoid property (T).

A groupoid is transitive if any two objects have an arrow
between them. Transitive second countable locally compact
fiberwise compact groupoids with open range and source
maps have property (T).
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Future Work

Applications?

Explore different notions of irreducibility. If φ ∈ ext(P1(G )),
then Lφ is [insert some notion of irreducibility]. Or, weaken
the notion of extreme point, C (G (0))-modules.

Explore property (T) for the measurable representation theory
of a groupoid

What is the relationship between weak containment and
property (T) with the groupoid C ∗-algebra C ∗(G ).

Kenneth Corea Groupoids and Property (T)


