Groupoids and Property (T)

Kenneth Corea

University of Hawai'i Mānoa

August 5, 2022

Let G be a topological group. A **unitary representation** of G is a pair (\mathcal{H}, π) where \mathcal{H} is a Hilbert space and π is a family of unitary operators $\pi_g : \mathcal{H} \to \mathcal{H}$ indexed by G, satisfying:

- (i) (identity) $\pi_e = I_{\mathcal{H}}$.
- (ii) (compatibility) $\pi_g \pi_h = \pi_{gh}$ for all $g, h \in G$.

Also, the map

$$G \times \mathcal{H} \to \mathcal{H}$$

 $(g,\xi) \mapsto \pi_g \xi$

is continuous.

- Let (\mathcal{H}, π) be a representation of G. A subrepresentation of (\mathcal{H}, π) is a closed G-invariant subspace.
- Two representations (\mathcal{H}, π) and (\mathcal{K}, ρ) are **unitarily** equivalent if there exists a unitary operator $T : \mathcal{H} \to \mathcal{K}$ such that the following diagram commutes for all $g \in \mathcal{G}$,

$$\begin{array}{ccc} \mathcal{H} & \stackrel{\pi_g}{\longrightarrow} & \mathcal{H} \\ \tau \Big\downarrow & & \downarrow \tau \\ \mathcal{K} & \stackrel{\rho_g}{\longrightarrow} & \mathcal{K} \end{array}$$

• A representation π is **(strongly) contained** in ρ , and write

$$\pi \subset \rho$$

if π is unitarily equivalent to a subrepresentation of ρ .

- In the 1948 Godement introduced the notion of weak containment of representations, which was further developed by Fell in the early 1960s.
- Let G be a topological group. Fix a representation (\mathcal{H},π) and a vector $\xi \in \mathcal{H}$. The continuous function $\phi: G \to \mathbb{C}$ defined by

$$\phi(\mathbf{g}) = \langle \pi_{\mathbf{g}} \xi, \xi \rangle$$

is called a **positive type function associated to** π .

- A positive type function ϕ is **normalized** if $\phi(e) = 1$.
- The collection of normalized positive type functions on G is denoted $\mathcal{P}_1(G)$.

• Let (\mathcal{H}, π) and (\mathcal{K}, ρ) be two representations of G. We say π is **weakly contained** in ρ , and write

$$\pi \prec \rho$$

if any function in $\mathcal{P}_1(G)$ associated to π can be approximated uniformly on compact subets of G by convex combinations of functions in $\mathcal{P}_1(G)$ associated to ρ .

• In symbols, for any unit vector $\xi \in \mathcal{H}$, any compact subset $Q \subset G$, and any $\epsilon > 0$, there exist unit vectors $\eta_1, \ldots, \eta_n \in \mathcal{K}$ and constants $0 \le t_1, \ldots, t_n \le 1$ with $\sum t_i = 1$ such that

$$\sup_{g \in Q} |\langle \pi_g \xi, \xi \rangle - \sum_{i=1}^n t_i \langle \rho_g \eta_i, \eta_i \rangle| < \epsilon.$$

• The representation (\mathbb{C}, π_0) where

$$\pi_0(g): \mathbb{C} \to \mathbb{C}$$
 $\pi_0(g)(z) = z$

for all $g \in G$ is called the **trivial representation**.

- A representation is **irreducible** if it contains no nontrivial subrepresentations. For example, π_0 is irreducible.
- The collection of all irreducible representations of a topological group G is denoted \widehat{G} .
- \widehat{G} is a topological space; its topology was studied by Fell in the early 1960s.

- A topological group G has **property (T)** if $\{\pi_0\}$ is an open set in \widehat{G} .
- Property (T) was introduced by Kazhdan in 1967.
- Kazhdan was attempting to demonstrate certain lattices were finitely generated.
 - Recall: a subgroup Γ of locally compact group G is a lattice if Γ is discrete and G/Γ carries a G-invariant probability measure.
- Example with property (T): any compact group
- ullet Example without property (T): $\mathbb Z$

• Property (T) is equivalent to the condition:

$$\forall \pi \ (\pi_0 \prec \pi \Rightarrow \pi_0 \subset \pi)$$

• A representation (\mathcal{H},π) has **almost invariant vectors** if for any compact subset $Q\subset G$ and every $\epsilon>0$ there exists a unit vector $\xi\in\mathcal{H}$ such that

$$\sup_{g\in Q}\|\pi_g\xi-\xi\|<\epsilon.$$

- $\pi_0 \prec \pi$ if and only if π has almost invariant vectors.
- $\pi_0 \subset \pi$ if and only if π has a nonzero invariant vector η , i.e.

$$\forall g \in G, \ \pi_g \eta = \eta.$$

 Hence, property (T) is equivalent to the condition: any representation that has almost invariant vectors has an invariant vector.

Definition

A groupoid is a small category with inverses.

$$G := \text{set of arrows (the groupoid)}$$

 $G^{(0)} := \text{set of objects (the base space)}$

- The elements of $G^{(0)}$ are called **units**.
- The functions $r, s: G \to G^{(0)}$ denote the the **range** and **source** maps. If $g: x \to y$ is an arrow, then

$$s(g) = x$$
 and $r(g) = y$.

$$G^{(2)}:=\{(g,h):s(g)=r(h)\}$$
 (composable pairs) $m:G^{(2)} o G$ (composition) $\iota:G o G$ (inversion)

A **topological groupoid** is a groupoid equipped with a topology making m and ι continuous.

• The range fiber at $x \in G^{(0)}$ is the set

$$G^{x} := \{g \in G : r(g) = x\}.$$

• The **isotropy group** at $x \in G^{(0)}$ is the group

$$G|_{x} := \{g \in G : s(g) = r(g) = x\}.$$

 Examples of groupoids: groups, group bundles, equivalence relations, group actions.

Example: Let X be a topological space. The fundamental groupoid $G = \Pi_1(X)$ of X:

- The base space $G^{(0)} = X$.
- The arrows are all homotopy classes of endpoint preserving paths in X.
- Each $G|_X$ is the fundamental group $\pi_1(X, X)$ with basepoint X.

Let G be a locally compact groupoid. A **Haar system** is a family of Radon measures $\lambda = \{\lambda^x : x \in G^{(0)}\}$ on G which satisfy:

- (i) Each λ^x only "sees" G^x .
- (ii) The measures are translation invariant in a suitable sense.

A Haar system plays the role of a Haar measure on a locally compact group.

A **continuous Banach bundle** over the space X is a continuous open surjection $\pi: E \to X$ where each fiber $E_x := \pi^{-1}(x)$ is a Banach space and the "induced" structure maps

$$u \mapsto \lambda u$$

$$(u, v) \mapsto u +_{E_x} v$$

$$u \mapsto ||u||_{E_x}$$

are all continuous where they make sense.

• Example: to each second countable locally compact groupoid G with Haar system λ and $1 \leq p < \infty$ we can associate a unique continuous Banach bundle over $G^{(0)}$,

$$L^p(G,\lambda) := \bigsqcup_{x \in G^{(0)}} L^p(\lambda^x).$$

 A continuous Hilbert bundle is a continuous Banach bundle where every fiber is a Hilbert space.

Let E and E' be continuous Banach bundles over X.

- A section or vector field is a function $\xi: X \to E$ where $\xi_X \in E_X$ for each $X \in X$.
- The space of continuous sections is denoted C(X, E).
- The dual of E, denoted E*, is the collection of all continuous maps φ : E → C such that the restriction φ_x := φ|E_x is linear for all x ∈ X.
- We call the members of *E** **functionals**.

Definition (C.)

Let E be a continuous Banach bundle over X. The **weak* topology** on E^* is defined by:

$$\phi_i \to \phi$$
 in $E^* : \Leftrightarrow \forall f \in E, \ \phi_i(f) \to \phi(f)$ in \mathbb{C} .

The weak* topology is the topology of pointwise convergence.

Theorem (C.)

Let E be a continuous Banach bundle over X. Then the set

$$(E^*)_1 := \{ \phi \in E^* : \|\phi_x\|_{E_x^*} \le 1 \text{ for all } x \in X \}$$

is weak* compact.

- Extension of Banach-Alaoglu theorem.
- For lack of a better term we will call $(E^*)_1$ the *unit tube*.

Let G be a topological groupoid. A **unitary representation** of G is a pair (E,L) where E is a continuous Hilbert bundle over $G^{(0)}$ and L is a family of unitary operators $L_g: E_{s(g)} \to E_{r(g)}$ indexed by G satisfying:

- (i) (identity) $L_x = I_x$ for each $x \in G^{(0)}$.
- (ii) (compatibility) $L_g L_h = L_{gh}$ for each $(g, h) \in G^{(2)}$.

Also, the map

$$\{(g,u): G \times E : u \in E_{s(g)}\} \to E$$

 $(g,u) \mapsto L_g u$

is continuous.

- Let (E, L) be a representation of a topological groupoid. A subrepresentation is a closed G-invariant subbundle.
- A unitary equivalence between representations (E, L) and (E', L') is an isometric isomorphism $T: E \to E'$ where the following diagram commutes for all $g \in G$,

$$E_{s(g)} \xrightarrow{L_g} E_{r(g)}$$

$$T_{s(g)} \downarrow \qquad \qquad \downarrow T_{r(g)}$$

$$E'_{s(g)} \xrightarrow{L'_g} E'_{r(g)}$$

• (E', L') (strongly) contains (E, L), denoted $L \subset L'$, if (E, L) is unitarily equivalent to a subrepresentation of (E', L').

Let G be a topological groupoid.

• Let G be a topological groupoid. Fix a representation (E,L) and a section $\xi \in C(G^{(0)},E)$. The continuous function $\phi:G\to\mathbb{C}$ defined by

$$\phi(g) = \langle \xi_{r(g)}, L_g \xi_{s(g)} \rangle_{E_{r(g)}},$$

is a **positive type function associated** to *L*.

ullet A positive type function ϕ is **normalized** if

$$\phi(x) = 1$$
 for all $x \in G^{(0)}$

• The collection of normalized positive type functions is denoted $\mathcal{P}_1(G)$.

Theorem (C.)

Let G be a second countable locally compact groupoid with Haar system λ . There is an embedding $\mathcal{P}_1(G) \to L^1(G,\lambda)^*$.

- The space $\mathcal{P}_1(G)$ can be viewed as a subset of the locally convex topological vector space $L^1(G,\lambda)^*$.
- $\mathcal{P}_1(G)$ can be endowed with the weak* subspace topology.

Definition (C.)

The fiberwise compact convergence (f.c.c.) topology on $\mathcal{P}_1(G)$ is the topology where $\phi_i \to \phi$ in $\mathcal{P}_1(G)$ if and only if

 $\forall x \in G^{(0)}, \ \phi_i | G^x \to \phi | G^x$ uniformly on compact sets in G^x .

Theorem (C.)

Let G be a second countable locally compact groupoid with Haar system. The weak* and f.c.c. topologies on $\mathcal{P}_1(G)$ coincide.

 Extension of Raikov's observation through an adaptation of Yoshizawa's argument.

Definition (Bos)

A unitary representation (E, L) of G is $G^{(0)}$ -irreducible if the restriction of L to each isotropy group is an irreducible group representation.

Example: the representation $(G^{(0)} \times \mathbb{C}, L_0)$ where G acts trivially, called the 1-dimensional **trivial representation**, is $G^{(0)}$ -irreducible.

Theorem (C.)

Let $\phi \in \mathcal{P}_1(G)$ be associated to the representation (E,L) of G. If (E,L) is $G^{(0)}$ -irreducible, then ϕ is an extreme point in $\mathcal{P}_1(G)$.

Weak Containment

Definition (C.)

Let (E, L) and (E', L') be two representations of G. We say (E, L) is **weakly contained** in (E', L'), and write

$$L \prec L'$$

if any function in $\mathcal{P}_1(G)$ associated to L can be approximated f.c.c. by *convex combinations* of functions in $\mathcal{P}_1(G)$ associated to L'.

Theorem (C.)

Let G be a second countable locally compact groupoid with Haar system. Suppose $L \prec L'$ and L is $G^{(0)}$ -irreducible. Then every $\phi \in \mathcal{P}_1(G)$ associated to L can be approximated f.c.c. by functions in $\mathcal{P}_1(G)$ associated to L'.

Weak Containment

A consequence of the Krein-Millman theorem: Let X be a locally convex topological vector space and let $A \subset X$. Suppose $C = \overline{\text{conv}(A)}$ is compact. Then

$$\operatorname{ext}(C) \subset \overline{A}$$
.

Sketch:

$$\begin{split} X &:= L^1(G,\lambda)^* \\ A &:= \text{all functions in } \mathcal{P}_1(G) \text{ associated to } L' \\ C &:= \overline{\operatorname{conv}(A)}^{weak*} \subset (L^1(G,\lambda)^*)_1 \text{ is weak* compact} \\ G^{(0)}\text{-irreducibility and } L \prec L' \Rightarrow \phi \in \operatorname{ext}(C) \\ \therefore \phi \in \overline{A}^{weak*} &= \overline{A}^{f.c.c.} \end{split}$$

Weak Containment

Let (E,L) be a representation of G. A section $\xi:G^{(0)}\to E$ is **unital** if

$$\|\xi_x\|=1$$
 for all $x\in G^{(0)}$

Definition (C.)

We say (E,L) has **almost invariant sections** if for any $x \in G^{(0)}$, $Q \subset G^x$ compact, and $\epsilon > 0$, there exists a unital section $\xi \in C(G^{(0)}, E)$ such that

$$\sup_{g \in Q} \|L_g \xi_{s(g)} - \xi_x\|_{E_x} < \epsilon.$$

A Definition of Property (T)

Theorem (C.)

Let (E, L) be a representation of a second countable locally compact groupoid with Haar system. Then the following are equivalent.

- $L_0 \prec L$.
- (E, L) has almost invariant sections.

Theorem (C.)

Let (E, L) be a representation of a topological groupoid G. Then the following are equivalent:

- $L_0 \subset L$.
- (E,L) contains a continuous unital invariant section η , that is, $L_g \eta_{g(g)} = \eta_{r(g)}$ for all $g \in G$.

A Definition of Property (T)

Definition (C.)

Let G be a topological groupoid. We say G has **property** (T) if any representation of G that has almost invariant sections has a continuous unital invariant section.

Examples of groupoids with property (T):

- Groups have Kazhdan's property (T) if and only if they have groupoid property (T).
- A groupoid is transitive if any two objects have an arrow between them. Transitive second countable locally compact fiberwise compact groupoids with open range and source maps have property (T).

Future Work

- Applications?
- Explore different notions of irreducibility. If $\phi \in \text{ext}(\mathcal{P}_1(G))$, then L^{ϕ} is [insert some notion of irreducibility]. Or, weaken the notion of extreme point, $C(G^{(0)})$ -modules.
- Explore property (T) for the measurable representation theory of a groupoid
- What is the relationship between weak containment and property (T) with the groupoid C^* -algebra $C^*(G)$.