
The Traditional Definition of the Integral
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y = f(x)

∫ 5

2

f(x) dx = lim
n→∞

n∑
i=1

f(x′i) ∆x

where ∆x =
5− 2

n
and x′i lies somewhere between

2 + (i− 1)∆x and 2 + i ∆x.



1. What Is an Integral?

An integral is a process (a black box) that takes an input

consisting of a function f and a closed interval [a, b] and

produces an output which is a numerical value.

-

-

-

f

[a, b] ∫ b

a f(x) dx

(For mathematicians, the most important issue here is: What sort of function can f(x)

be? We will assume here that we are working with functions which are continuous or

break up into a finite number of continuous pieces pieced together. This is adequate

generality for most applications of integration in the physical sciences and engineering.)

The integral is characterized by three important properties.



Axioms for the Integral

1. Cumulative.∫ c

a f(x)dx =
∫ b

a f(x)dx +
∫ c

b f(x)dx.

2. Quantizable. If we replace the function f(x)

by a function by one which instead of

increasing continuously increases by an

incredibly large number of incredibly small

quantum jumps, then we will get a very good

approximation of the integral. More precisely,

if we take a sequence of step functions which

approaches f(x) as the limit, then
∫ b

a f(x)dx

will be the limit of the integrals of these step

functions.

3. Constant functions. If f(x) = C, where C

is a constant, then
∫ b

a f(x)dx = (b− a)C.

Properties 1 and 3 imply that if we have two apparently different black

boxes with these same properties, then they would produce the same

value whenever f(x) is a step function. Since every Riemann-integrable

function is a limit of step functions, Property 2 then implies that the

two black boxes actually produce the same value for all functions.



Many black boxes in the “Real World,” satisfy the three properties which characterize

the integral.

“Real World” Relationships With These Properties

1. The area under a curve.

2. The work done by a force applied over a certain distance.

3. The distance traveled by an object moving with a given

velocity function over a given time interval.

4. The volume of a solid obtained by revolving the graph of a

function y = f(x) around the x-axis.

5. The force created by a given pressure over an area. (This will

correspond to a double integral.)

6. The mass of a solid corresponding to a given density

function. (This will correspond to a triple integral.)

Since the three properties uniquely characterize the integral, we can then conclude
that the above relationships are given by integrals. We don’t need to re-invent the
integral for each new application as is commonly done in calculus books.

2. Work =

∫ b

a

Force(x) dx

4. Volume =

∫ b

a

πf(x)2 dx

5. Force =

∫
Ω

Pressure(x, y) dx dy

etc.



HOWEVER

Many important applications of integration satisfy the first and

second conditions that characterize the integral but do not satisfy

the third. Namely, when the function involved is constant, the

quantity to be calculated is not given simply by a multiplication by

b− a.

For instance, let V be the volume of the solid of revolution obtained by revolving

that portion of the graph of a function y = f(x) between x = a and x = b (assuming

0 < a < b) around the y-axis.
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y = 8− 2x

A cone, seen as a

volume of revolution

obtained by revolving

the line y = 8− 2x

around the y-axis.



Then when f(x) is a constant H , we get a hollow cylinder and the volume is

V = π(b2 − a2)H .
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A hollow cylinder, obtained by

revolving the constant function

f(x) = H between x = a and x = b

around the y-axis.

Volume = πb2H − πa2H

= πH(b2 − a2).

The multiplier b2 − a2 doesn’t fit our paradigm for the integral.

If we try to force it into the previous paradigm, we might try this:

Volume =

∫ b2

a2
πf(x) d(x2) (??)

Now as good calculus students, we do in fact know that the volume of the solid of

revolution obtained from revolving a curce around the y-axis is given by an integral,

namely

V = 2π

∫ b

a

xf(x) dx .

This is a different sort of integral than the ones we have been considering, since the

integral contains not only the function f(x) but also the independent variable x.

(In the language of integration theory, for this application of integration we need to use

a new “measure,” namely 2πx dx instead of dx.)



The Structure of an Application of Integration

In general, a particular application of integration will have the following

structure.

-

-

-

f

[a, b] Numerical
ValueApplication

All applications of integration will satisfy Property 1 of the

integral.

1. Cumulative. If a < b < c then the value determined by looking at

the function over the interval [a, c] will be the sum of the value

determined over [a, b] and the value determined over [b, c].

Most applications will also satisfy Property 2.

2. Quantizable. If we replace the function f(x) by one which instead

of increasing continuously increases by an incredibly large number of

incredibly small quantum jumps, then we will get a very good

approximation. More precisely, if we take a sequence of step functions

which approaches f(x) as the limit, then the value corresponding

to f(x) will be the limit of the values corresponding to the step

functions.

Many important applications, however, will not satisfy the

previously stated Property 3. When f(x) is constant, the value of

the quantity in question will not simply be given by multiplication by

b− a.



However we assume that it is known what the correct formula is when

the function f(x) is constant then we will be able to figure out the

correct integral formula.

The Golden Rule of Thumb for Integrals

If a reasonable∗ formula given by an integral gives the

correct answers when applied to constant functions, and if

the particular application in question satisfies Property 2,

i. e. is quantizable, then the formula is in fact correct.

* The fine print. Basically, this will be good for formulas of the form∫ b

a
Φ(x, f(x)) dx ,

where Φ is a continuous function of two variables.
The only easy way to screw up is to include the derivative f ′(x) (or
higher derivatives) in the integrand.

For instance, if v(t) is velocity, then the formula

Distance =

∫ t1

t0

v(t) (1 + v′(t)) dt (??)

gives the correct answer when the velocity v(t) is a constant, or for that matter a
step function, but gives the wrong answer in all other cases.



Why the Golden Rule Works

Because the integral is cumulative (i. e. additive over disjoint intervals), if a formula

given by an integral gives the correct answer for constant functions, then it will also

give the correct answer for step functions. But if the application in question is

quantizable, then the correct value corresponding to the function f(x) can be obtained

by taking the limit of the values for a sequence of step functions converging to f(x).

The reason for calling the principle above a “Rule of Thumb” is that there are two

ways it can go wrong: First, the application in question might not in fact be

quantizable. And second, the formula in question might involve f ′(x) or otherwise fail

to meet the conditions of the footnote.

A few important applications of integration are not quantizable according

to our definition and hence do not satisfy Property 2. These applications

cannot be ignored.

The most obvious example is the formula for the length of that portion of the graph

of a function y = f(x) between points x = a and x = b. If one “quantizes” a

function, i. e. approximates it by a step function, one will not get a good

approximation to the length of its graph. In fact, it is fairly clear that for step

functions, the length is always b− a, whereas this is never true for functions whose

slope is non-zero in at least some places.
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A step-function

approximation to a straight

line.

Theorem. Suppose the quantity being computed by an application has an

increasing relationship to the function that determines it (i. e. making the function

bigger always makes the quantity bigger), and that for constant functions, over a given

interval the quantity depends continuously on the (constant) value of the function.

Then the relationship is quantizable.

Example. The volume obtained by revolving that portion of the graph of a positive
function y = f(x) between x = a and x = b around the y-axis . (Clearly making the function
bigger will increase the volume.)

The continuity assumption in the theorem is included to rule out the possibility of bizarre, contrived
counter-examples. In most cases, the theorem can be proved without it in any case.

Most common applications of integration are increasing.

The same thing holds if the relationship between the function and quantity being computed
is decreasing rather than increasing.



The idea of the proof of the theorem is that one brackets a function between a step

function below it and a step function above it. Since by assumption, the application in

question is increasing, the value corresponding to the function will lie between the

values corresponding to these two step functions. But, as I will show in a moment, by

making the steps small enough, the values corresponding to the step functions can be

made arbitrarily small.

Thus the value corresponding to these step functions can be made arbitrarily close to

the value for the function under consideration.

This is what we mean when we say that the application is quantizable.
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Proof of my claim that the values for the application in question corresponding to the

two step functions bracketing f(x) will be extremely close together if the steps are

made small enough:

I will prove this only in the special case that the function f(x) is increasing from a

to b. Then looking at these two step functions together, we can see that except for the

first step, the lower one is the same as the upper one except shifted one step to the

right. (This works because we have made all the steps of the same width.)
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As an example, for the volume of revolution around the x-axis, using the lower step

function gives an approximation (assuming that the function y = f(x) is increasing, as

in the picture)

Vs = πf(x0)
2∆x + πf(x1)

2∆x + πf(x2)
2∆x + · · ·+ πf(xn−1)

2∆x

and using the upper step function gives an approximation

VS = πf(x1)
2∆x + πf(x2)

2∆x + · · ·+ πf(xn−1)
2∆x + πf(xn)2∆x ,

where ∆x = (b− a)/n . But it is evident that

VS − Vs = (πf(xn)2 − πf(x0)
2) ∆x

= (πf(b)2 − πf(a)2) ∆x ,

and this can be made as small as we want by making ∆x small enough (i. e. making n large
enough). (Note that the continuity assumption in the theorem was not required for the proof
in this case that f(x) is an increasing function. A similar proof works if f(x) is a decreasing
function. And almost all continuous functions can be obtained by gluing together pieces of
increasing functions with pieces of decreasing ones.)



And now for something different:

An important bad example.

Note that the length of the graph of a function does not have an increasing relationship to
the function. Making the function f(x) larger makes its graph between x = a and x = b

higher but not longer. If we did not already know it, this would be a hint that length does
not have a quantizable relationship to the function.

However if one makes the derivative f ′(x) larger (in absolute value), then the curve gets
steeper and does in fact become longer. This suggests the the length of the curve might be
given by some integral involving f ′(x).

We have seen that we cannot find the length of the graph of a function f(x) by
approximating f(x) by a step function. However it seems plausible that one could find the
length by approximating the graph of the function by a set of line segments.
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(a, f(a))

(b, f(b))

b− a

f(b)− f(a)

If f(x) = mx + c is a straight-line function, then the length of this curve from the

point (a, f(a)) to the point (b, f(b)) is

√
(b− a)2 + (f(b)− f(a))2 =

√
(b− a)2 + m2(b− a)2

= (b− a)
√

1 + m2

= (b− a)
√

1 + f ′(x)2 .

Thus the formula

Length =

∫ b

a

√
1 + f ′(x)2 dx

gives the correct answer for straight line segments.

Since the length of any curve can be approximated arbitrarily closely by replacing the

curve by a union of very short line segments, we see that this formula gives the correct

result for the length of the graph of any function.


