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ABSTRACT. We study the behavior of the analytic capacity of a compact set under de-
formations obtained by families of conformal maps depending holomorphically on the
complex parameter. We show that, under those deformations, the logarithm of the analytic
capacity varies harmonically. We also show that the hypotheses in this result cannot be
substantially weakened.

1. INTRODUCTION AND STATEMENT OF RESULTS

The analytic capacity of a compact set K ⊂ C is defined by

γ(K) := sup
g
|g′(∞)|,

where the supremum is taken over all holomorphic functions g : Ĉ\K→D. Here D denotes
the open unit disk, and g′(∞) is defined by

g′(∞) := lim
z→∞

z(g(z)−g(∞)).

Analytic capacity was introduced by Ahlfors [1] in connection with the Painlevé problem
of characterizing removable singularities for bounded holomorphic functions. For more
information on this subject, see the books of Garnett [5] and Tolsa [10].

The precise value of the analytic capacity is known only for a relatively small class of
compact sets, satisfying rather restrictive geometric or connectivity properties. This leads
us to seek techniques for estimating analytic capacity. One such technique was developed
in [12], using numerical methods. In this note we obtain estimates via a result on the varia-
tion of the analytic capacity of a compact set that depends holomorphically on a parameter.

The prototype for our results is an old result from a paper of Yamaguchi [11] concerning
the logarithmic capacity c(K). Yamaguchi’s result states that, if λ 7→ Kλ is an analytic
multifunction defined on a domain D, then λ 7→ logc(Kλ ) is a subharmonic function on D.
For a brief introduction to analytic multifunctions, see Chapter VII of Aupetit’s book [4].
Yamaguchi’s theorem is proved in [4, Theorem 7.1.3].

It turns out that the analogous result for analytic capacity is false. We do not stop here
to give an example, since we shall establish a better result in Theorem 1.3 below. Thus, in
order to find a substitute of Yamaguchi’s result for analytic capacity, we need to consider a
more restricted notion of holomorphic variation of sets.

The appropriate notion is that of a holomorphic motion. Given a subset A of the Rie-
mann sphere Ĉ, a holomorphic motion of A is a map f : D×A 7→ Ĉ such that:

(i) for each fixed z ∈ A, the map λ 7→ f (λ ,z) is holomorphic on D,
(ii) for each fixed λ ∈ D, the map z 7→ f (λ ,z) is injective on A,
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(iii) f (0,z) = z for all z ∈ A.
It is a remarkable fact, first established by Słodkowski in [9], that every holomorphic

motion f : D×A→ Ĉ admits an extension to map f : D× Ĉ→ Ĉ that is a holomorphic
motion of Ĉ. For another proof of this result, as well as more background on holomorphic
motions, see [3]. Though we do not use this theorem directly, it does serve to motivate our
consideration of holomorphic motions of Ĉ.

In what follows, we write fλ (z) := f (λ ,z). The following theorem is our first result.

Theorem 1.1. Let K be a compact subset of C such that γ(K) > 0. Let f : D× Ĉ→ Ĉ
be a holomorphic motion such that, for each λ ∈ D, the map fλ is holomorphic on Ĉ \K
and satisfies fλ (∞) = ∞. Then, writing Kλ := fλ (K), we have that λ 7→ logγ(Kλ ) is a
harmonic function on D.

Combining this result with Harnack’s inequality for positive harmonic functions, we
immediately obtain the following two-sided estimate for the analytic capacity of Kλ .

Corollary 1.2. Assume, in addition, that γ(Kλ )≤M for all λ ∈ D. Then

1−|λ |
1+ |λ |

≤ log(M/γ(Kλ ))

log(M/γ(K))
≤ 1+ |λ |

1−|λ |
(λ ∈ D). �

Theorem 1.1 yields a stronger conclusion than Yamaguchi’s theorem (harmonic versus
subharmonic), but it also requires a much stronger hypothesis. It is natural to ask whether
the hypothesis can be weakened. In particular, is it possible to omit the assumption that fλ

be holomorphic on Ĉ\K? Our second result answers this question in the negative.

Theorem 1.3. There exist a holomorphic motion f : D× Ĉ→ Ĉ, satisfying fλ (∞) = ∞

for all λ ∈ D, and a compact subset K of C with γ(K) > 0, such that, if we set Kλ :=
fλ (K), then the functions λ 7→ γ(Kλ ) and λ 7→ logγ(Kλ ) are neither subharmonic nor
superharmonic on D.

2. PROOFS

For the proof of Theorem 1.1, we shall need two lemmas. The first is part of the so-
called λ -lemma, due to Mañé, Sad and Sullivan [6, p.193].

Lemma 2.1. A holomorphic motion f : D×A→ Ĉ is jointly continuous in (λ ,z). �

The second lemma is a simple result about how the analytic capacity of a compact set
transforms under conformal mapping of the complement.

Lemma 2.2. Let K and L be compact subsets of C and let h : Ĉ\K→ Ĉ\L be a conformal
mapping such that h(∞) = ∞. If γ(K)> 0, then also γ(L)> 0 and, for all R > maxz∈K |z|,

γ(K)

γ(L)
=
∣∣∣ 1
2πi

∫
|z|=R

h(z)
z2 dz

∣∣∣.
Proof. Under the hypotheses on h, we have h(z) = az+O(1) as |z|→∞, where a∈C\{0}.
Given a holomorphic function g : Ĉ\L→ D, the composition g◦h is a holomorphic map
from Ĉ\K to D with (g◦h)′(∞) = ag′(∞). Hence

|g′(∞)|= |(g◦h)′(∞)|/|a| ≤ γ(K)/|a|.
Taking the supremum over all such g, we deduce that γ(L)≤ γ(K)/|a|.

Applying the same argument to the inverse map h−1 : Ĉ \ L→ Ĉ \K, which satisfies
h−1(z) = a−1z+O(1) as |z| → ∞, we obtain γ(K)≤ γ(L)|a|, and hence γ(K)/γ(L) = |a|.
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Finally, to evaluate a, we observe that, by Cauchy’s theorem, if R > maxz∈K |z|, then∫
|z|=R

h(z)
z2 dz =

∫
|z|=R′

h(z)
z2 dz (R′ > R),

and hence∫
|z|=R

h(z)
z2 dz = lim

R′→∞

∫
|z|=R′

h(z)
z2 dz = lim

R′→∞

∫
|z|=R′

az+O(1)
z2 dz = 2πia.

The result follows. �

Proof of Theorem 1.1. Fix R > maxz∈K |z|. By Lemma 2.2, applied to the conformal map-
ping fλ : Ĉ\K→ Ĉ\Kλ , we have γ(Kλ )> 0 for all λ ∈ D and

(2.1)
γ(K)

γ(Kλ )
=
∣∣∣ 1
2πi

∫
|z|=R

f (λ ,z)
z2 dz

∣∣∣ (λ ∈ D).

By Lemma 2.1, the map (λ ,z) 7→ f (λ ,z) is continuous. Also, it is holomorphic in λ (and
finite-valued) for each fixed z with |z| = R. It follows easily that the integral in (2.1) is a
holomorphic function of λ . Since the integral does not take the value zero, the log of its
modulus is a harmonic function. It follows that logγ(Kλ ) is a harmonic function of λ . �

We now turn to Theorem 1.3. For this, we need the following result of Astala [2]. Here
and in what follows, dimH denotes the Hausdorff dimension.

Lemma 2.3. Given t ∈ (0,2), there exist a holomorphic motion f : D× Ĉ→ Ĉ satisfying
fλ (∞) = ∞ for all λ ∈ D, and a compact subset K of C, such that, writing Kλ := fλ (K),
we have

(2.2) dimH(Kλ ) =
2t

t +(2− t)(1−λ )/(1+λ )
(0≤ λ < 1).

Proof. Essentially this is proved in [2, p.54]. In fact, what is shown there is that, given a
sequence of pairwise disjoint disks (Dk)k≥1 inside the unit disk, there exist a holomorphic
motion f : D× Ĉ→ Ĉ and compact sets (Jk)k≥1 such that fλ (Jk)⊂Dk for all k≥ 1 and all
λ ∈ D, and

dimH( fλ (∪kJk)) =
2t

t +(2− t)(1−λ )/(1+λ )
(0≤ λ < 1).

It is easy to see that, in addition, f may be chosen so that fλ (∞) = ∞ for all λ ∈ D. If we
further stipulate that the disks Dk accumulate only at 0, then∪kJk =∪kJk∪{0} and fλ (0)=
0 for all λ ∈ D. Thus, setting K := ∪kJk and Kλ := fλ (K), we have Kλ = fλ (∪kJk)∪{0}
for all λ ∈D. Since the addition of a single point does not affect the Hausdorff dimension,
it follows that (2.2) holds. �

Proof of Theorem 1.3. Fix t ∈ (0,1) and choose f and K as in Lemma 2.3. Then there
exists δ ∈ (0,1) such that dimH(Kλ )< 1 for λ ∈ [0,δ ) and dimH(Kλ )> 1 for λ ∈ (δ ,1).
Now it is a well-known property of analytic capacity of compact sets that dimH < 1 implies
γ = 0 and that dimH > 1 implies γ > 0 (see for example [10, p.34]). Thus we have

γ(Kλ )

{
= 0, 0≤ λ < δ ,

> 0, δ < λ < 1.

In particular logγ(Kλ ) = −∞ on [0,δ ). This straightaway rules out the possibility that
logγ(Kλ ) be superharmonic, since superharmonic functions never take the value −∞.
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It also shows that logγ(Kλ ) cannot be subharmonic on D, because a subharmonic func-
tion that takes the value −∞ on a line segment must be equal to −∞ everywhere in its
domain (see for example [8, Exercise 2.5.1]), and in our case logγ(Kλ )>−∞ if λ ∈ (δ ,1).

It is also easy to see that λ 7→ γ(Kλ ) is not superharmonic on D. Indeed, it attains a
minimum without being constant, thus violating the minimum principle for superharmonic
functions.

To treat the question of whether λ 7→ γ(Kλ ) is subharmonic, we invoke the following
criterion due to Radó [7, §3.12]: given a non-negative function u(λ ), then logu(λ ) is
subharmonic if and only if |eαλ |u(λ ) is subharmonic for each α ∈ R. Since we know that
logγ(Kλ ) is not subharmonic, by Radó’s criterion there exists α ∈ R such that |eαλ |γ(Kλ )

is not subharmonic. Thus, if we replace f (λ ,z) by the holomorphic motion eαλ f (λ ,z),
which has the effect of replacing Kλ by eαλ Kλ , we obtain an example for which, in addition
to all the other properties already established, λ 7→ γ(Kλ ) is not subharmonic on D.

This nearly proves the theorem. The only item lacking is that γ(K) = 0, instead of
γ(K) > 0 as promised. To get round this, it is enough to change the base point of the
holomorphic motion, as follows. Fix λ0 ∈ (δ ,1) and define

f̃ (λ ,z) := f
(

λ0−λ

1−λλ0
, f−1

λ0
(z)
)

and K̃ := Kλ0 .

Then f̃ is a holomorphic motion, and K̃λ := f̃λ (K̃) = K(λ0−λ )/(1−λλ0) for all λ ∈ D. Thus
the modified pair f̃ , K̃ satisfies all the requirements of the theorem. �
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vol. 83, Univ. Jyväskylä, 2001, 27–40.
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