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Abstract. We present a brief introduction to analytic capacity, with an em-
phasis on its numerical computation. We also discuss several related open
problems.

1. Introduction

Analytic capacity is an extremal problem introduced by Ahlfors [1] in 1947 in
order to study a problem posed by Painlevé [21] asking for a geometric character-
ization of the compact plane sets E ⊂ C having the property that every bounded
analytic function on C \E is constant. Such compact sets are called removable and
are precisely the ones of zero analytic capacity. Finding both necessary and suf-
ficient geometric conditions for removability quickly appeared to be very difficult,
and it took more than a hundred years until a satisfying solution was obtained,
thanks to the work of Melnikov, David, Tolsa and many others.

Another motivation for the study of analytic capacity came to light in 1967, when
Vitushkin [27] observed that it plays a fundamental role in the theory of uniform
rational approximation of analytic functions on compact plane sets. More precisely,
analytic capacity can be used to formulate necessary and sufficient conditions for
a compact set E to have the property that every function continuous on E and
analytic in the interior of E is uniformly approximable by rational functions with
poles outside E. See e.g. [31] for more details and other applications of analytic
capacity to this type of problem.

Although several important problems in Complex Analysis and related areas can
be expressed in terms of analytic capacity, the fact that the latter is very hard to
calculate or even estimate often remains a major obstacle. Motivated by this and
by applications to the subadditivity problem, the author and Ransford developed
in [28] an efficient and rigorous method based on quadratic minimization for the
numerical computation of the analytic capacity of sufficiently nice compact sets.
The method yields rigorous upper and lower bounds which converge to the true
value of the capacity.

The purpose of this survey article is to present a detailed description of this
method and discuss some applications to related open problems. Section 2 con-
tains a brief introduction to analytic capacity, including its definition and main
properties. Then, in Section 3, we describe the numerical method from [28]. The
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remaining sections are devoted to applications and related open problems, and each
of them can be read independently of the others. In Section 4, we study the subaddi-
tivity inequality γ(E∪F ) ≤ γ(E)+γ(F ). More precisely, we use an approximation
technique due to Melnikov [18] to show that it suffices to prove the inequality in the
very special case where E and F are disjoint compact sets which are finite unions
of disjoint closed disks, all with the same radius. We also give numerical evidence
for subadditivity and formulate a conjecture which, if true, would imply that the
inequality holds. Section 5 deals with the problem of finding all Ahlfors functions
which are rational maps, as instigated by Jeong and Taniguchi [13]. Finally, in Sec-
tion 6, we discuss the relationship between analytic capacity and a similar extremal
problem, the Cauchy capacity.

2. Analytic capacity : definition and preliminaries

In this section, we introduce the notions of analytic capacity, Ahlfors function
and Garabedian function. The content is quite standard and can be found in [11]
for example.

2.1. Definition and elementary properties. Let E be a compact subset of the

complex plane C and let Ω := Ĉ\E be the complement of E in the Riemann sphere.
The analytic capacity of E is defined by

γ(E) := sup{|f ′(∞)| : f ∈ H∞(Ω), |f | ≤ 1}.
Here f ′(∞) := limz→∞ z(f(z)−f(∞)) denotes the coefficient of 1/z in the Laurent
expansion of f near infinity, and H∞(Ω) denotes the space of all bounded analytic
functions on Ω.

The following properties follow more or less directly from the definition.

• E ⊂ F ⇒ γ(E) ≤ γ(F ).
• γ(aE + b) = |a|γ(E) (a, b ∈ C).
• Outer regularity : En ↓ E ⇒ γ(En) ↓ γ(E).
• E is removable for bounded analytic functions if and only if γ(E) = 0.
• γ(E) = γ(∂eE), where ∂eE is the outer boundary of E, i.e. the boundary
of the unbounded component of Ω.

Note that the last property implies that the analytic capacity of a set E only
depends on its unbounded complementary component. We can therefore assume
without loss of generality that Ω is connected, which we will do for the remaining
of this article.

2.2. The Ahlfors function. A simple normal families argument shows that for
every compact set E, there exists an extremal function f for γ(E), that is, a function
f analytic on Ω with |f | ≤ 1 and f ′(∞) = γ(E). Moreover, in the case γ(E) > 0,
any extremal function f must satisfy f(∞) = 0, for otherwise composing with
a Möbius automorphism of the unit disk sending f(∞) to 0 would give a larger
derivative at ∞.

Proposition 2.1. In the case γ(E) > 0, the extremal function is unique.

The following proof due to Fisher [8] is so short and elegant that we reproduce
it below.
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Proof. Suppose that f and g are extremal functions, and let h := (f + g)/2, k :=
(f − g)/2, so that f = h + k and g = h − k. We have to show that k ≡ 0. Since
|f |2 ≤ 1 and |g|2 ≤ 1 on Ω, we get that |h|2 + |k|2 ± 2Rehk ≤ 1. Adding these two
inequalities and dividing by two gives |h|2 + |k|2 ≤ 1, and thus

|h|+ 1

2
|k|2 ≤ |h|+ 1

2
(1− |h|2) ≤ |h|+ 1

2
(1 + |h|)(1− |h|) ≤ |h|+ 1− |h| = 1.

Assume that k is not identically zero, and write k2/2 = an/z
n + an+1/z

n+1 + . . .
near ∞, where an 6= 0. Note that n ≥ 2 since k(∞) = 0.

Now, let ǫ > 0 be small enough so that ǫ|an||z|n−1 ≤ 1 on some bounded
neighborhood V of E, and set f1 := h + ǫanz

n−1k2/2. Then f1 is analytic on Ω
and

|f1| ≤ |h|+ ǫ|an||z|n−1 |k|2
2

≤ |h|+ 1

2
|k|2 ≤ 1

on V \ E, and thus everywhere on Ω by the maximum modulus principle. But a
simple calculation gives f ′

1(∞) = h′(∞) + ǫ|an|2 > γ(E), a contradiction.
�

This unique extremal function is called the Ahlfors function for E (or on Ω). It

is the unique function f analytic on Ω = Ĉ \ E with |f | ≤ 1 and f ′(∞) = γ(E).
We now mention several well-known properties of the Ahlfors function f for a

compact set E. We of course assume that γ(E) > 0.

• Conformal invariance : if h : Ω → Ω′ is conformal with expansion F (z) =

a1z + a0 + a−1/z + . . . near ∞, and if E′ := Ĉ \ Ω′, then g := f ◦ h−1 is
the Ahlfors function for E′ and γ(E′) = |a1|γ(E).

• If E is connected, then f : Ω → D is the unique conformal map of Ω onto
the open unit disk D normalized by f(∞) = 0 and f ′(∞) > 0. In particular,
we have γ(D(z0, r)) = r and γ([a, b]) = (b − a)/4.

• More generally, if Ω is a non-degenerate n-connected domain (i.e. E has
n connected components, each of them containing more than one point),
then f : Ω → D is a degree n proper analytic map.

• If E ⊂ R, then the Ahlfors function for E is given by

f(z) =
eh(z) − 1

eh(z) + 1
(z ∈ Ω),

where

h(z) :=
1

2

∫

E

dt

z − t
.

The first two properties follow directly from a simple change of variable and
Schwarz’s lemma respectively. Note that the second property implies that the
analytic capacity of a connected set is equal to its logarithmic capacity. The third
property was proved by Ahlfors [1]. Finally, the last property follows from a result
of Pommerenke (see e.g. [11, Chapter 1, Theorem 6.2]) saying that the capacity
of a set E ⊂ R equals a quarter of its one-dimensional Lebesgue measure m(E).
Indeed, one can easily check that the given function f maps Ω into D and satisfies
f ′(∞) = m(E)/4, so it has to be the Ahlfors function.
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2.3. The Garabedian function. As observed by Garabedian [10], the analytic
capacity of sufficiently nice compact sets can be obtained as the solution to a dual
extremal problem.

More precisely, let E ⊂ C be a compact set, and assume that E is bounded
by finitely many mutually exterior analytic Jordan curves. Let A(Ω) denote the

space of analytic functions in Ω = Ĉ \ E which extend continuously up to Ω. The
Garabedian function for E (or on Ω) is the unique function ψ ∈ A(Ω) satisfying
ψ(∞) = 1/2πi and

∫

∂E

|ψ(ζ)| |dζ| = inf

{∫

∂E

|h(ζ)| |dζ| : h ∈ A(Ω), h(∞) =
1

2πi

}
.

The Garabedian function has the following properties.

• ψ extends analytically across ∂Ω.
• ψ represents evaluation of the derivative at ∞, in the sense that, for all
g ∈ A(Ω), we have

g′(∞) =

∫

∂E

g(ζ)ψ(ζ) dζ.

• ψ has a well-defined analytic logarithm in Ω. In particular, there exists a
function q ∈ A(Ω) such that q(∞) = 1 and q2 = 2πiψ.

• γ(E) =
∫
∂E

|ψ(ζ)| |dζ|.
• The differential f(ζ)ψ(ζ) dζ is positive on ∂E.

We also mention that the above function q is, up to a multiplicative constant, the
Szegő kernel function K(·,∞) (the reproducing kernel for the evaluation functional
at ∞ in the Hardy space H2(Ω)). Indeed, we have

(1) K(z,∞) =
1

2πγ(E)
q(z) (z ∈ Ω).

See [11, Theorem 4.3].

3. Numerical computation

In this section, we present the method developed in [28] for the numerical com-
putation of analytic capacity.

First, for the sake of completeness, let us briefly describe a simple method for
the computation of γ(E) based on Equation (1).

It is well-known that if E is bounded by finitely many mutually exterior analytic
Jordan curves, then the rational functions with poles outside E are dense in the
Hardy space H2(Ω). Applying the Gram-Schmidt procedure, one can therefore
extract an orthonormal basis {un}n≥1. Then, since

K(z,∞) =
∑

n≥1

un(∞)un(z),

we obtain, from Equation (1),

γ(E) =
1

2π
K(∞,∞)−1 =

1

2π



∑

n≥1

|un(∞)|2



−1

.
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However, this very simple method has two main disadvantages. First, computing
a large number of elements of the orthonormal basis {un}n≥1 seems to be numer-
ically unstable, which causes precision issues. Secondly, and more importantly,
truncating the sum in the above formula only yields an upper bound for γ(E).

We also mention that the Szegö kernel (and therefore the analytic capacity)
can be computed by solving the Kerzman-Stein integral equation, see [2] and [5].
However, as far as we know, there seems to be very few numerical examples, and
only for compact sets with a small number of connected components.

On the other hand, the method developed in [28] for the numerical computation
of analytic capacity is both efficient and precise for a wide variety of compact sets.
Furthermore, it yields both lower and upper bounds which can be made arbitrarily
close to the true value of the capacity, thereby providing adequate error control.
The method relies on two key estimates, which we present in the next subsection.

3.1. Estimates for analytic capacity. Let E ⊂ C be a compact set, and again
suppose that E is bounded by finitely many mutually exterior analytic Jordan
curves.

Theorem 3.1 (Younsi–Ransford [28]). We have

(2) γ(E) = min

{
1

2π

∫

∂E

|1 + g(z)|2|dz| : g ∈ A(Ω), g(∞) = 0

}

and

(3) γ(E) = max

{
2Reh′(∞)− 1

2π

∫

∂E

|h(z)|2|dz| : h ∈ A(Ω), h(∞) = 0

}
.

Here the minimum and maximum are attained respectively by the functions g = q−1
and h = fq, where f is the Ahlfors function for E and q is the square root of 2πi
times the Garabedian function ψ for E, as in Subsection 2.3.

The first estimate is due to Garabedian and follows from the formula for γ(E)
in terms of ψ, as in Susbsection 2.3. The second estimate was obtained in [28]. We
reproduce its proof for the reader’s convenience.

Proof. A simple calculation shows that the maximum in (3) is attained by the
function fq, which belongs to A(Ω) and vanish at ∞. Note that |f | = 1 on ∂E. It
thus suffices to show that if h ∈ A(Ω) and if h(∞) = 0, then

γ(E) ≥ 2Reh′(∞)− 1

2π

∫

∂E

|h(z)|2|dz|.

Denote by T (z) the unit tangent vector to ∂E at z, that is, dz = T (z)|dz| with
|T | ≡ 1. Let 〈h1, h2〉 denote

∫
∂E

h1(z)h2(z)|dz| and ‖h‖22 := 〈h, h〉. Then

0 ≤ 1

2π
‖h− iqT‖22 =

1

2π
‖h‖22 +

1

2π
‖q‖22 + 2Re

1

2π
〈h,−iqT 〉,

so that

0 ≤ 1

2π

∫

∂E

|h(z)|2|dz|+ γ(E)− 2Re
1

2πi

∫

∂E

h(z)q(z)dz.

It follows that

0 ≤ 1

2π

∫

∂E

|h(z)|2|dz|+ γ(E)− 2Re (hq)′(∞).
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Since q(∞) = 1 and h(∞) = 0, we have (hq)′(∞) = h′(∞), and thus

γ(E) ≥ 2Reh′(∞)− 1

2π

∫

∂E

|h(z)|2|dz|,

as required.
�

3.2. The algorithm. Theorem 3.1 yields a simple method for the numerical com-
putation of analytic capacity based on quadratic minimization. We only explain
how to obtain a decreasing sequence of upper bounds for γ(E), the method for the
lower bounds being very similar.

Let S be any finite set containing at least one point in each component of the
interior of E. It is well known that the set of rational functions with poles in S is
uniformly dense in A(Ω), by Mergelyan’s theorem for example.

For each k ∈ N, let Fk be the set of all functions of the form (z − p)−j , with
1 ≤ j ≤ k and p ∈ S. In view of (2), the quantity

uk := min

{
1

2π

∫

∂E

|1 + g(z)|2|dz| : g ∈ spanFk

}

gives an upper bound for γ(E).
In practice, we find the minimum uk as follows.

(1) We define

g(z) :=
∑

gj∈Fk

(cj + idj)gj(z),

where the cj ’s and dj ’s are real numbers to be determined.
(2) We compute the integral

1

2π

∫

∂E

|1 + g(z)|2|dz|

as an expression in the cj ’s and dj ’s. This gives a quadratic form with a
linear term and a constant term.

(3) We find the cj ’s and dj ’s that minimize this expression, by solving the
corresponding linear system.

The sequence (uk)
∞
k=1 is decreasing by construction, and it converges to γ(E) by

Mergelyan’s theorem.
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3.3. Numerical examples. In this subsection, we present several numerical ex-
amples to illustrate the method. All the numerical work was done with matlab.

Example 3.3.1. Union of two disks.

Here E is the union of two disks of radius 1 centered at −2 and 2.

Figure 1. The compact set E for Example 3.3.1

In this case, a natural choice for the set S described in Subsection 3.2 is {−2, 2},
so that lower and upper bounds for γ(E) can be computed using linear combinations
of functions of the form (z ± 2)−j . However, we shall instead consider functions of
the form

gj(z) =
1

z − aj
,

where the aj ’s are distinct points in the interior of E. The reason is that with
simples poles instead of multiple ones, the integrals involved in the method are
easily calculated analytically, which results in a significant gain in efficiency.

Typically, for each disk centered at c with radius r, we put the poles aj at the
points

{c, c± r1, c± r1i, c± r2, c± r2i, . . . , c± rn, c± rni},
where r1, . . . , rn are equally distributed between 0 and r. This choice, although
completely arbitrary, seems to yield good numerical results, as shown in Table 1
below.
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Table 1. Lower and upper bounds for γ(E) for Example 3.3.1

Poles per disk Lower bound for γ(E) Upper bound for γ(E) Time (s)
1 1.875000000000000 1.882812500000000 0.001867
5 1.875593064023693 1.875619764386366 0.003115
9 1.875595017927203 1.875595038756883 0.003462
13 1.875595019096871 1.875595019097141 0.003854
17 1.875595019097112 1.875595019097164 0.005046

The numerical results agree with the value

γ(E) ≈ 1.8755950190971197289,

obtained using the formula from [20] for the analytic capacity of the union of two
disks in terms of elliptic integrals.

Example 3.3.2. Union of several disks.

In this example, we compute the analytic capacity of the union of several closed
disjoint disks, all with the same radius. Such compact sets are especially relevant
for the subadditivity problem, as we will see in Section 4.

The centers of the disks as well as the radius were randomly generated, and we
computed the analytic capacity using 5 poles per disk.

Table 2. Lower and upper bounds for γ(E) for Example 3.3.2

Number of disks Lower bound for γ(E) Upper bound for γ(E) Time (s)
10 4.565899720026281 4.565918818251154 0.008976
100 0.856133344195575 0.856133345307269 1.465479
200 4.968896699483210 4.968903654028726 10.525317
500 6.471536902032636 6.471540680554522 163.594474
1000 6.548856893117339 6.548862005607368 1252.940712
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Example 3.3.3. Union of four ellipses.

The compact set E is composed of four ellipses centered at −3, 3, 10i, −10i.
Each ellipse has a semi-major axis of 2 and a semi-minor axis of 1.

Figure 2. The compact set E for Example 3.3.3

Table 3. Lower and upper bounds for γ(E) for Example 3.3.3

Poles per ellipse Lower bound for γ(E) Upper bound for γ(E) Time (s)
1 4.290494449193028 5.652385361295098 0.962078
5 5.252560204660928 5.409346641724527 17.268477
9 5.356419530523225 5.377445892435984 54.260216
13 5.370292494009306 5.372648058950175 111.424592
17 5.371877137036634 5.372044462730262 190.042871
41 5.371995432221965 5.371995878776166 1100.468881

In this case, the integrals involved have to be calculated numerically. We used a
recursive adaptive Simpson quadrature with an absolute error tolerance of 10−9.

3.4. Further numerical examples : piecewise analytic boundary. It was
proved in [28] that the estimates of Theorem 3.1 remain valid in the case of compact
sets bounded by finitely many piecewise-analytic curves, provided the space A(Ω)
is replaced by a larger space of analytic functions, the Smirnov space E2(Ω). The
convergence of the lower and upper bounds to the capacity was also established in
this more general case.

As a consequence, given a compact set E bounded by finitely many mutually
exterior piecewise-analytic curves, the algorithm of Section 3.2 should in principle
give an approximation of γ(E).
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Example 3.4.1. The square.

In this example, we consider the square with corners 1, i, −1, −i.

Figure 3. The compact set E for Example 3.4.1

We computed the bounds using functions of the form z−j for 1 ≤ j ≤ k. Table 4
lists the bounds obtained for different values of k.

Table 4. Lower and upper bounds for γ(E) for Example 3.4.1

k Lower bound for γ(E) Upper bound for γ(E) Time (s)
2 0.707106781186547 0.900316316157106 0.021981
3 0.707106781186547 0.900316316157106 0.069278
4 0.707106781186547 0.887142803070031 0.109346
5 0.746499705182962 0.887142803070031 0.145614
6 0.746499705182962 0.887142803070031 0.202309
7 0.746499705182962 0.887142803070031 0.295450
8 0.746499705182962 0.881014562149127 0.347996
9 0.761941423753061 0.881014562149127 0.414684
10 0.761941423753061 0.881014562149127 0.595552
15 0.770723484232218 0.877175902241141 2.425285
20 0.776589045256849 0.872341829081944 5.537981
25 0.784189460107018 0.870656623669828 10.002786
30 0.786857803378602 0.869257904380382 16.344379
35 0.789068961951613 0.868068649269412 26.109797
40 0.790942498354322 0.866133165258689 33.595790

We notice that the convergence is very slow, especially compared to the results
obtained in the analytic boundary case. The main issue here is that the approxi-
mation process does not take into account the geometric nature of the boundary.
However, as observed in [28], this is easily fixed as follows.

Recall from Theorem 3.1 that the functions to be approximated are q and fq,
where f is the Ahlfors function for E and q is the square root of 2πi times the
Garabedian function. One can show that these functions behave like

√
F ′ near the

corners of the square E, where F is a conformal map of Ω = Ĉ \ E onto Ĉ \ D.
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But if a is one of those corners, then F behaves like (z − a)2/3 near a, and thus√
F ′ behaves like (z − a)−1/6. Since we want functions that are analytic near ∞,

we consider instead (1 − a/z)−1/6. This shows that using linear combinations of
the functions

fj(z)

zk

for j = 0, 1, 2, 3, 4 and k = 1, 2, . . . , n, where a1, a2, a3, a4 are the corners of the
square,

f0(z) := 1

and

fj(z) :=
(z − aj

z

)−1/6

(j = 1, 2, 3, 4),

should yield better results.
We use this improvement of the method to recompute the analytic capacity of

the square. One can see that the convergence is indeed significantly faster.

Table 5. Lower and upper bounds for γ(E)

n Lower bound for γ(E) Upper bound for γ(E) Time (s)
2 0.834566926465074 0.835066810881929 1.334885
3 0.834609482283050 0.834678782816948 2.918624
4 0.834622127643984 0.834628966618492 5.220941
5 0.834626255962448 0.834627566559480 8.022274
6 0.834626584020641 0.834627152182154 11.542859

In this case, the answer can be calculated exactly. Indeed, since E is connected,
we have that

γ(E) = cap(E) =
√
2
Γ(1/4)2

4π3/2
≈ 0.83462684167407318630,

where cap(E) is the logarithmic capacity of E.
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Lastly, the improved method can easily be generalized to compute the analytic
capacity of any compact set with piecewise analytic boundary. Here is a non-
polygonal example.

Example 3.4.2. Union of a disk and two semi-disks

Figure 4. The compact set E for Example 3.4.2

The compact set E is composed of the unit disk and two half-unit-disks centered
at 3 and 3i.

Table 6. Lower and upper bounds for γ(E) for Example 3.4.2

n Lower bound for γ(E) Upper bound for γ(E) Time (s)
2 2.118603690751346 2.123888275897654 2.546965
3 2.120521869940459 2.121230615594293 4.926440
4 2.120666182274863 2.120803766391281 9.488024
5 2.120694837101383 2.120716977856280 13.679742
6 2.120703235395670 2.120709388805280 22.344576
7 2.120704581010457 2.120707633546616 28.953791
8 2.120705081159854 2.120706704970516 34.781046

4. The subadditivity problem

This section deals with the subadditivity problem for analytic capacity.
The study of the analytic capacity of unions of sets was instigated by Vitushkin

[27], who conjectured that analytic capacity is semi-additive, i.e. there exists a
universal constant C such that

γ(E ∪ F ) ≤ C(γ(E) + Γ(F )) (E,F ⊂ C compact ),
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motivated by applications to problems of uniform rational approximation of analytic
functions. The semi-additivity of analytic capacity was finally proved many years
later by Tolsa [26], along with a solution to Painlevé’s problem. See [24], [25]
and also Subsection 6.1 for more information regarding Tolsa’s work on analytic
capacity.

Despite such remarkable work, the optimal value of the constant C remains
unknown. In particular, can we take C = 1?

Problem 4.1. Is analytic capacity subadditive? In other words, is it true that

(4) γ(E ∪ F ) ≤ γ(E) + γ(F )

for all compact sets E,F?

We mention that (4) is known to hold in the following cases :

• The sets E,F are disjoint and connected [23].
• One of the two sets has zero analytic capacity, see e.g. [29, Lemma 2.6].
• The sets E,F are contained in R, since in this case analytic capacity is
equal to a quarter of Lebesgue measure, by Pommerenke’s result (see the
last property in Subsection 2.2).

Now, we saw in Subsection 3.3 that the numerical method of [28] for the compu-
tation of analytic capacity is very efficient in the case of compact sets bounded by
analytic curves. Therefore, from a computational point of view, it would certainly
be interesting to know whether it suffices to prove (4) only for such sets. Using a
discrete approach to analytic capacity due to Melnikov [18], one can actually prove
a much stronger result.

Theorem 4.2. The subadditivity of analytic capacity is equivalent to

γ(E ∪ F ) ≤ γ(E) + γ(F )

for all disjoint compact sets E and F that are finite unions of disjoint closed disks,

all with the same radius.

4.1. Melnikov’s approach. In this subsection, we give a proof of Theorem 4.2
using an approximation technique due to Melnikov. The proof can also be found
in [28, Theorem 7.1].

Following [18], we introduce the following notation. Let z1, . . . , zn ∈ C and let
r1, . . . , rn be positive real numbers. Set Z := (z1, . . . , zn) and R := (r1, . . . , rn).
We assume that |zj − zk| > rj + rk for j 6= k, so that the closed disks D(zj , rj) are

pairwise disjoint. Define K(Z,R) := ∪n
j=1D(zj , r) and µ1(Z,R) := sup{|∑n

j=1 aj |},
the supremum being taken over all points a1, . . . , an ∈ C such that

∣∣∣∣∣∣

n∑

j=1

aj
z − zj

∣∣∣∣∣∣
≤ 1 (z /∈ K(Z,R)).

Clearly, we have µ1(Z,R) ≤ γ(K(Z,R)).
Finally, for any compact set K ⊂ C and δ > 0, we denote the closed δ-

neighborhood of K by Kδ.
The proof of Theorem 4.2 relies on the following lemma due to Melnikov [18,

Lemma 1].
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Lemma 4.3 (Melnikov [18]). Let K ⊂ C be compact, and let δ, ǫ > 0. Then there

exist z1, . . . , zn ∈ Kδ and 0 < r < δ such that |zj − zk| > 2r for j 6= k, and

µ1(Z,R) ≥ (1− ǫ)γ(K),

where Z = (z1, . . . , zn) and R = (r, . . . , r).
In particular,

γ(K(Z,R)) ≥ (1− ǫ)γ(K).

In other words, the analytic capacity of any compact set can be approximated
by the capacity of the union of finitely many disjoint closed disks, all with the
same radius (note that if δ > 0 is sufficiently small, then γ(Kδ) is close to γ(K) by
outer-regularity).

We now give a sketch of the proof of Lemma 4.3.

Proof. The idea is to choose finitely many complex numbers a1, . . . , an such that
γ(K) =

∑n
j=1 aj and

∣∣∣∣∣∣

n∑

j=1

aj
z − zj

∣∣∣∣∣∣
≤ 1 + Cǫ (z /∈ K(Z,R)),

where K(Z,R) is the union of n disjoint closed disks near K. Clearly, this implies
the conclusion of the lemma.

In the following, the letter C will denote a positive constant independent of δ
and ǫ, whose value may change throughout the proof.

Let φ be a C∞ function on C with 0 ≤ φ ≤ 1, φ = 0 onKδ/3, φ = 1 on C\K(2/3)δ

and |∂φ| ≤ Cδ−1. If f is the Ahlfors function for K, then a simple application of
the Cauchy-Green formula gives

(5) f(z)φ(z) =
1

π

∫
f(w)∂φ(w)

z − w
dA(w) (z /∈ K).

Now, partition the plane with squares {Qj} of side-length ρ, where ρ > 0 is
sufficiently small and will be determined later. Note that if ρ < δ/6 and Qj ∩
supp(∂φ) 6= ∅, then Qj is contained in Kδ \K. Let J be the set of all j for which

Qj ∩ supp(∂φ) 6= ∅, so that J is finite. For j ∈ J , define

fj(z) :=
1

π

∫

Qj

f(w)∂φ

z − w
dA(w).

Then by Equation (5), we have fφ =
∑

j∈J fj on C \K. Also, let

aj :=
1

π

∫

Qj

f(w)∂φ dA(w).

Then |aj | ≤ Cδ−1ρ2. Also, we have, for j ∈ J and z /∈ K,

|fj(z)| ≤ Cδ−1ρ,

by splitting the integral over Qj ∩ {w : |z − w| ≤ ρ} and Qj ∩ {w : |z − w| > ρ}.
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Now, note that if zj is the center of Qj and if |z − zj| > ρ, then
∣∣∣∣fj(z)−

aj
z − zj

∣∣∣∣ ≤ 1

π

∫

Qj

|f(w)∂φ(w)||zj − w|
|z − w||z − zj |

dA(w)

≤ Cδ−1 1

|z − zj|

∫

Qj

|zj − w|
|z − w| dA(w).

To estimate this last integral, note that if w ∈ Qj , then

|z − zj||w − zj| ≤ Cρ|z − w|,
which gives ∣∣∣∣fj(z)−

aj
z − zj

∣∣∣∣ ≤ Cδ−1ρ3|z − zj|−2.

Let r := Nρ2δ−1ǫ−1, where N is a large positive integer to be selected below.
We shall take ρ sufficiently small so that D(zj , r) ⊂ Qj ⊂ Kδ \ K for each j. If
z ∈ ∪j∈J∂D(zj, r), then we have

∣∣∣∣∣∣

∑

j∈J

aj
z − zj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∑

j∈J

(
fj(z)−

aj
z − zj

)∣∣∣∣∣∣
+ |f(z)φ(z)|

≤ 1 +
∑

j∈J′

(Cδ−1ρ+ Cδ−1r−1ρ2) +
∑

j∈J′′

Cδ−1ρ3|z − zj|−2,

where J ′ denotes all the j ∈ J such that |z− zj| ≤ ρ, and J ′′ the remaining indices
in J . We have to show that each of the two sums is small, say less than ǫ. First,
note that J ′ contains at most four indices, and thus the sum over j ∈ J ′ can be
made smaller than ǫ by choosing ρ sufficiently small, provided

CN−1ǫ = Cδ−1r−1ρ2

is sufficiently small, which will be the case for N much larger than C.
We now estimate the sum over j ∈ J ′′. Note that if j ∈ J ′′ and w ∈ Qj, then

|z − w| ≤ |z − zj|+ |zj − w| ≤ (1 +
√
2/2)|z − zj|,

so that
∑

j∈J′′

Cδ−1ρ3|z − zj |−2 ≤ Cδ−1ρ
∑

j∈J′′

∫

Qj

dA(w)

|w − z|2 .

Now, again if w ∈ ∪j∈J′′Qj , then |w − z| ≥ (1 −
√
2/2)ρ and |w − z| ≤ diam(Kδ).

It follows that

∑

j∈J′′

Cδ−1ρ3|z − zj|−2 ≤ Cδ−1ρ

∫ 2π

0

∫ diam(Kδ)

(1−
√
2/2)ρ

1

s2
s ds dθ

≤ Cδ−1ρ log
diam(Kδ)

ρ
,

which is less than ǫ provided ρ is sufficiently small. This holds for all z ∈ ∪j∈J∂D(zj, r),
and therefore for all z /∈ ∪j∈JD(zj , r) by the maximum principle.
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Thus, choosing ρ sufficiently small and N sufficiently large, we get
∣∣∣∣∣∣

∑

j∈J

aj
z − zj

∣∣∣∣∣∣
≤ 1 + 2ǫ (z /∈ K(Z,R)),

where Z = (z1, . . . , zn) is the vector of the centers of the squares Qj with j ∈ J ,
and R = (r, . . . , r). The result then follows by observing that

γ(K) = f ′(∞) = (fφ)′(∞) =
1

π

∫
f(w)∂φ(w) dA(w) =

∑

j∈J

aj ,

where we used Equation (5).
�

We can now prove Theorem 4.2.

Proof. Suppose that there exist compact sets E,F with

γ(E ∪ F ) > γ(E) + γ(F ).

Let 0 < ǫ < γ(E ∪ F )− γ(E)− γ(F ). Take δ > 0 sufficiently small so that

(6) γ(E2δ) < γ(E) + ǫ/3,

and

(7) γ(F2δ) < γ(F ) + ǫ/3.

By Lemma 4.3, there exist z1, z2, . . . , zn ∈ (E ∪ F )δ and 0 < r < δ such that

γ(K(Z,R)) ≥ γ(E ∪ F )− ǫ/3

and the disks D(zj , r) are pairwise disjoint. For each j ∈ {1, 2, . . . , n}, fix wj ∈ E∪F
with |zj − wj | = dist(zj , E ∪ F ) ≤ δ. Let A be the union of the disks D(zj, r) with

wj ∈ E, and let B be the union of the disks D(zk, r) with wk ∈ F \ E. Then
A ⊂ E2δ and B ⊂ F2δ. Finally, we get

γ(A ∪B) ≥ γ(E ∪ F )− ǫ/3

> γ(E) + γ(F ) + ǫ− ǫ/3

= γ(E) + ǫ/3 + γ(F ) + ǫ/3

> γ(A) + γ(B),

where we used equations (6) and (7).
�

4.2. Numerical experiments. We saw in the previous subsection that in Prob-
lem 4.1, it suffices to consider compact sets E and F that are disjoint finite unions
of disjoint closed disks, all with the same radius. In other words, if there is a coun-
terexample to the subadditivity inequality, then there must be a counterexample
with disks. This is quite fortunate, since our numerical method for the computa-
tion of analytic capacity converges very quickly for such sets, see Example 3.3.1
and Example 3.3.2. This allows us to perform several numerical experiments, in
the hope of perhaps finding a counterexample.

To describe these numerical experiments, let z1, . . . , zn, w1, . . . , wm be distinct
complex numbers in C, and let δ > 0 be the minimal distance separating these
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points. For 0 < r < δ/2, the disks D(zj , r), j = 1, . . . , n, D(wk, r), k = 1, . . . ,m are

all pairwise disjoint. In this case, we set Er := ∪jD(zj , r) and Fr := ∪kD(wk, r).
By Theorem 4.2, the subadditivity of analytic capacity is equivalent to the in-

equality

R(r) :=
γ(Er ∪ Fr)

γ(Er) + γ(Fr)
≤ 1

for all z1, . . . , zn, w1, . . . , wm and all 0 < r < δ/2.
Using the algorithm of Subsection 3.2, one can compute, for given z1, . . . , zn and

w1, . . . , wm, the ratio R(r) for many values of r, and then plot the graph of R(r)
versus r.

Example 4.2.1. In this example, the total number of disks is 40. The compact
set E is composed of the 20 disks with bold boundaries, and F is the union of the
remaining disks.

Figure 5. The set Er ∪ Fr for Example 4.2.1

For 500 values of the radius r equally distributed between 0 and 0.499, we com-
puted lower and upper bounds for the ratio R(r). Figure 6 shows the graph of the
lower bound versus r. The graph for the upper bound is almost identical; the two
graphs differ by at most 0.002481.



18 M. YOUNSI

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
o
w

e
r 

b
o
u
n
d
 f
o
r 

R
(Z

,r
,m

)

radius r

Figure 6. Graph of the ratio R(r) for Example 4.2.1

Example 4.2.2. In this example, the total number of disks is 18. The compact
set E is composed of the 12 disks with bold boundaries, and F is the union of the
remaining disks.

Figure 7. The set Er ∪ Fr for Example 4.2.2
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Figure 8. Graph of the ratio R(r) for Example 4.2.2

A few remarks are in order. First, all of our numerical experiments seem to
suggest that R(r) ≤ 1 for all r, i.e. that analytic capacity is indeed subadditive.
More surprisingly though, all computations seem to suggest that the following might
be true.

Conjecture 4.4 (Younsi–Ransford [28]). For all z1, . . . , zn, w1, . . . , wm, the func-

tion R(r) is decreasing in 0 < r < δ/2.

A proof of Conjecture 4.4 would imply that analytic capacity is subadditive.
Indeed, this follows from the following asymptotic expression for R(r) as r → 0+,
which shows that for fixed centers of the disks, the ratio R(r) is less than 1, for all
r sufficiently small.

Theorem 4.5 (Younsi–Ransford [28]). Let z1, . . . , zn, w1, . . . , wm ∈ C. Then

R(r) = 1− Cr2 +O(r3) (r → 0+),

where C is a positive constant depending only on m, n and the points z1, . . . , zn
and w1, . . . , wm.

The proof also follows from results of Melnikov [18]. The constant C and the
error term in Theorem 4.5 can be made more or less explicit, but it seems difficult
to extract any useful information.

Lastly, we mention that Conjecture 4.4 was proved in the simplest case n =
m = 1 (see [28, Theorem 8.2]), based on Murai’s formula from [20] for the analytic
capacity of the union of two disjoint closed disks.

5. Rational Ahlfors functions

In this section, we discuss another problem related to the computation of analytic
capacity.
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5.1. Definition and properties. The starting point of the study of rational
Ahlfors functions is the following result of Jeong and Taniguchi [13], whose unique-

ness part was proved in [9]. Recall that a domain Ω in the Riemann Sphere Ĉ

is a non-degenerate n-connected domain if Ĉ \ Ω has exactly n connected compo-
nents, each of them containing more than one point. By a repeated application of
the Riemann mapping theorem, every such domain Ω is conformally equivalent to
a domain bounded by analytic curves. We may therefore assume without loss of
generality that ∂Ω is analytic.

Theorem 5.1 (Jeong–Taniguchi [13], Fortier Bourque–Younsi [9]). Let Ω be a non-

degenerate n-connected domain containing ∞, and let f be the Ahlfors function on

Ω. Then there exist a rational map R of degree n and a conformal map g : Ω →
R−1(D) such that f = R ◦ g. Moreover, if f = Q ◦ h for another rational map

Q of degree n and a conformal map h : Ω → Q−1(D), then there is a Möbius

transformation T such that Q = R ◦ T−1 and h = T ◦ g.
In particular, this shows that every non-degenerate n-connected domain is con-

formally equivalent to a domain of the form R−1(D) for some rational map R.
The proof relies on the construction of a Riemann surface obtained by welding

n copies of the unit disk D to Ω using the map f . The Riemann surface X thereby

obtained is topologically a sphere, thus there is a conformal map g : X → Ĉ.

One can then easily extend f to X so that the composition f ◦ g−1 : Ĉ → Ĉ is
holomorphic and hence a rational map R of the degree n, the same degree as the
proper map f . This proves the existence statement, and the uniqueness part follows
from a standard removability argument.

The uniqueness part of Theorem 5.1 implies in particular that the pair (R, g)
is unique if we require the conformal map g : Ω → R−1(D) to be normalized by
g(z) = z + b1/z + b2/z

2 + . . . near ∞. Moreover, in this case, the conformal
invariance of Ahlfors functions (see Subsection 2.2) shows that R is the Ahlfors
function on its restricted domain R−1(D). Such rational maps are called rational
Ahlfors functions. More precisely, a rational map R is a rational Ahlfors function

if

• R(∞) = 0
• R−1(D) is an n-connected domain
• R is the Ahlfors function on R−1(D).

The second condition is equivalent to requiring that all the critical values of R
belong to D. In particular, a rational Ahlfors function must have only simple poles,
since otherwise it would have ∞ as a critical value, and can therefore be written as

R(z) =
n∑

j=1

aj
z − pj

for some a1, . . . , an ∈ C\{0} and distinct p1, . . . , pn ∈ C. With this representation,
we have R′(∞) =

∑n
j=1 aj , so that R is a rational Ahlfors function if and only if

γ(E) =
∑n

j=1 aj , where E := Ĉ \R−1(D) = R−1(Ĉ \ D).
In [13], Jeong and Taniguchi raised the problem of finding all rational Ahlfors

functions.

Problem 5.2. Determine which residues a1, . . . , an and poles p1, . . . , pn correspond

to rational Ahlfors functions.
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In view of Theorem 5.1, a solution to Problem 5.2 would yield a complete un-
derstanding of all Ahlfors functions on finitely connected domains, up to conformal
equivalence.

We mention that the problem is trivial for n = 1 : rational Ahlfors functions of
degree 1 are precisely the rational maps of the form z 7→ a1/(z−p1) for a1 > 0 and
p1 ∈ C. As for higher degree, the first examples were given in [9].

5.2. Rational Ahlfors functions with reflection symmetry. Let R be a ratio-
nal map with R(∞) = 0, and suppose that Ω := R−1(D) is an n-connected domain.
In this case, the domain Ω is bounded by n disjoint analytic curves Γ1, . . . ,Γn. Let
f be the Ahlfors function on Ω. By definition, proving that R is a rational Ahlfors
function amounts to showing that R = f .

Now, both R and f are degree n proper analytic maps of Ω onto the unit disk
D. In particular, they extend analytically across ∂Ω and map each boundary curve
Γj homeomorphically onto ∂D. In general, however, there are many such proper
maps, in view of the following result of Bieberbach and Grunsky, whose proof can
be found in [3, Theorem 2.2] or [17, Theorem 3].

Theorem 5.3 (Bieberbach [4], Grunsky [12]). Let Ω be a non-degenerate n-connected
domain containing ∞ and bounded by n disjoint analytic Jordan curves Γ1, . . . ,Γn.

For each j, let αj be any point in Γj. Then there exists a unique proper analytic

map g : Ω → D of degree n satisfying g(∞) = 0 whose extension to ∂Ω maps each

αj to the point 1.

In particular, one way to prove that R = f is to show that these two maps send
the same points to 1. This will be the case if, for instance, R has only real poles
and positive residues.

Theorem 5.4 (Fortier Bourque–Younsi [9]). Let

R(z) :=

n∑

j=1

aj
z − pj

,

where the poles p1, . . . , pn are distinct and real, and the residues a1, . . . , an are

positive. If Ω := R−1(D) is an n-connected domain, then R is a rational Ahlfors

function.

The idea of the proof is to observe that in this case, the domain Ω is symmetric
with respect to the real axis, intersecting it at 2n points α1 < β1 < · · · < αn < βn
such that R(αj) = −1 and R(βj) = 1 for each j. Now, the domain Ω can be

mapped conformally onto the complement Ω′ in Ĉ of n disjoint closed intervals in
the real line, by mapping Ω ∩ H onto the upper half-plane H, and then using the
Schwarz reflection principle. Now, using the formula for the Ahlfors function on
Ω′ and conformal invariance (see Subsection 2.2), one can show that f(βj) = 1 for
each j, from which it follows that R = f by the uniqueness part of Theorem 5.3.

5.3. Rational Ahlfors functions with rotational symmetry. Again, let R be
a rational map with R(∞) = 0, and assume that Ω = R−1(D) is an n-connected
domain. Let f : Ω → D be the Ahlfors function. We saw in Subsection 5.2 that in
order to prove that R = f , it suffices to show that they both map the same points
to 1. Another way to prove that these maps are equal is to show that they have the
same zeros, because then one can apply the maximum principle to both quotients
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R/f and f/R, whose absolute values are equal to 1 everywhere on ∂Ω, to deduce
that R/f is a unimodular constant, which has to be one provided R′(∞) > 0. This
observation was used in [9] to prove the following result.

Theorem 5.5 (Fortier Bourque–Younsi [9]). Let n ≥ 2, 0 < a < n(n− 1)(1−n)/n,

and R(z) = azn−1/(zn − 1). Then R is a rational Ahlfors function.

The condition on a guarantees that Ω is n-connected. Now, if ω := e2πi/n, then
ωΩ = Ω and thus

ωf(ωz) = f(z) (z ∈ Ω),

by uniqueness of the Ahlfors function. This implies that f vanishes only at 0 and
∞, the same zeros as R. Indeed, if f had a zero at z0 6= 0,∞, then f would vanish
at z0, ωz0, . . . , ω

n−1z0 and ∞, a total of n+1 distinct points, contradicting the fact
that f has degree n. It follows that R = f .

5.4. Positivity of residues and numerical examples. As mentioned at the
end of Subsection 5.1, the rational Ahlfors functions of degree one are of the form
R(z) = a/(z−p), where a > 0 and p ∈ C. In degree two, the positivity of residues is
also a necessary and sufficient condition for a rational map to be a rational Ahlfors
function, as proved in [9].

Theorem 5.6 (Fortier Bourque–Younsi [9]). A rational map of degree two is a

rational Ahlfors function if and only if it can be written in the form

R(z) =
a1

z − p1
+

a2
z − p2

,

for distinct p1, p2 ∈ C and positive a1, a2 satisfying a1 + a2 < |p1 − p2|.
Now, note that all the examples of rational Ahlfors functions that we obtained so

far have positive residues. It thus seems natural to expect the positivity of residues
to be a sufficient condition, in any degree. Unfortunately, as observed in [9], this
fails even in degree 3. Before presenting the counterexample, we first explain how
to numerically check whether a given rational map is a rational Ahlfors function.

Let

R(z) :=

n∑

j=1

aj
z − pj

,

and suppose that R−1(D) is an n-connected domain. Let E be the compact set

E := R−1(Ĉ \ D) = {z ∈ C : |R(z)| ≥ 1}.
Recall that R is a rational Ahlfors function if and only if γ(E) =

∑∞
j=1 aj . We can

therefore check whether R is a rational Ahlfors function by computing γ(E) using
the numerical method of Subsection 3.2. However, the method involves integrals
over the boundary of E with respect to arclength, and thus the first step is to
obtain a parametrization of ∂E = {z ∈ C : |R(z)| = 1}. One can do this by solving
for z in the equation R(z) = eit, which is easily done provided the degree n of R is
small, say n ≤ 3.

We now present some numerical examples to illustrate the method. All the nu-
merical work was done with matlab, the integrals being computed with a precision
of 10−9.
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Example 5.4.1. Let

R(z) =
0.2

z + 2
+

0.1

z
+

0.4

z − 5
.

Figure 9. The boundary of E = { z ∈ C : |R(z)| ≥ 1 } for Exam-
ple 5.4.1

As described in Subsection 3.2, one can compute γ(E) using linear combinations
of the functions (z + 2)−j , z−j and (z − 5)−j, 1 ≤ j ≤ k, for various values of k.

Table 7. Lower and upper bounds for γ(E) for Example 5.4.1

k Lower bound for γ(E) Upper bound for γ(E)
1 0.696735209508754 0.700011861859377
2 0.699988138057939 0.700000163885012
3 0.699999835775098 0.700000002518033

By Theorem 5.4, the rational map R is the Ahlfors function for the compact set
E, and we have

γ(K) = R′(∞) = 0.2 + 0.1 + 0.4 = 0.7.

Our numerical results therefore agree with the predicted value.
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Example 5.4.2. Let

R(z) =
z2

z3 − 1
.

Figure 10. The boundary of E = { z ∈ C : |R(z)| ≥ 1 } for
Example 5.4.2

Table 8. Lower and upper bounds for γ(E) for Example 5.4.2

k Lower bound for γ(E) Upper bound for γ(E)
1 0.897012961211562 1.003766600572323
2 0.996247533470256 1.000449247199905
3 0.999550954532515 1.000227970885994
4 0.999772081072887 1.000015305500631
5 0.999984694733624 1.000004234543914
6 0.999995765474017 1.000002049275081

By Theorem 5.5, R is the Ahlfors function for the compact set E, and thus we
have

γ(E) = R′(∞) = 1.
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Example 5.4.3. The following example answers a question raised in [9] asking
whether Theorem 5.4 holds if the rational map R is allowed to have conjugate pairs
of poles.

Question 5.7 (Fortier Bourque–Younsi [9]). Suppose that a rational map R satis-

fies R(z) = R(z) and has all positive residues. If R−1(D) is an n-connected, must

R be a rational Ahlfors function?

The following numerical counterexample shows that the answer to Question 5.7
is in fact negative. Consider

R(z) =
0.6

z
+

1.2

z − (1 + 4i)
+

1.2

z − (1− 4i)
.

Figure 11. The boundary of E = { z ∈ C : |R(z)| ≥ 1 } for
Example 5.4.3

Table 9. Lower and upper bounds for γ(E) for Example 5.4.3

k Lower bound for γ(E) Upper bound for γ(E)
1 2.791098712682427 3.011700281953340
2 2.990065509632496 3.003544766713681
3 2.998352995858360 3.001339199421414
4 3.000606967107599 3.001054476070951
5 3.000898172927223 3.000989499718515
6 3.000964769941962 3.000979603389716
7 3.000974855197433 3.000977619119024
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We see that R′(∞) = 3 < 3.000974855197433≤ γ(E), so that R is not a Rational
Ahlfors function.

The above example also shows that the positivity of residues is not sufficient
for a rational map of degree 3 to be Ahlfors. This can be also be extended to any
degree n ≥ 3, replacing R by

Rǫ(z) := R(z) +

n∑

j=4

ǫ

z − bj
,

where b4, . . . , bn are distinct points in R−1(D) and ǫ > 0 is small.

Theorem 5.8 (Fortier Bourque–Younsi [9]). For every n ≥ 3, there exists a ra-

tional map R such that R(∞) = 0, R−1(D) is an n-connected domain, and R has

only positive residues, but R is not a rational Ahlfors function.

Finally, using Koebe’s continuity method based on Brouwer’s Invariance of Do-
main theorem, it is possible to show that the residues of a rational Ahlfors functions
are not necessarily positive.

Theorem 5.9 (Fortier Bourque–Younsi [9]). For every n ≥ 3, there exists a ratio-

nal Ahlfors function of degree n whose residues are not all positive.

Combining these results show that the positivity of residues is neither sufficient
for necessary for a rational map to be Ahlfors, in any degree n ≥ 3.

The proof of Theorem 5.9, however, is not constructive, and it would be very
interesting to find explicit examples.

Problem 5.10. Find an explicit example of a rational Ahlfors function whose

residues are not all positive.

6. The Cauchy capacity

This section deals with the relationship between analytic capacity and the Cauchy
capacity, arising from another similar extremal problem. Before proceeding fur-
ther, let us first give some motivation with a brief overview of Tolsa’s solution of
Painlevé’s problem.

6.1. The capacity γ+, Painlevés problem and the semi-additivity of ana-

lytic capacity. We only give a very brief introduction to Painlevé’s problem and
related results, since a detailed discussion is beyond the scope of this survey article.
The interested reader may consult [7], [24] or [25] for more information.

Recall from the introduction that Painlevé’s problem asks for a geometric char-
acterization of the compact sets that are removable for bounded analytic functions.
We say that a compact set E ⊂ C is removable (for bounded analytic functions) if
every bounded analytic function on C \E is constant. As mentioned in Subsection
2.1, removable sets coincide precisely with the sets of zero analytic capacity.

Painlevé was the first one to observe that there is a close relationship between
removability and Hausdorff measure and dimension. More precisely, he proved
that compact sets of finite one-dimensional Hausdorff measure are removable. In
particular, sets of dimension less than one are removable. On the other hand, any
compact set E with Hausdorff dimension bigger than one is not removable. This
follows from Frostman’s lemma, which gives the existence of a non-trivial Radon
measure µ supported on E whose Cauchy transform
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Cµ(z) :=
∫

1

ξ − z
dµ(ξ)

is continuous on Ĉ. In particular, Cµ is bounded, and, since it is analytic on C \E
and non-constant (Cµ(∞) = 0 but Cµ′(∞) = −µ(E) 6= 0), we deduce that E is not
removable.

This proof illustrates the important role played by the Cauchy transform in the
study of removable sets, mainly because it is an easy way to construct functions
analytic outside a given compact set.

In view of the above remarks, Painlevé’s problem reduces to the case of dimension
exactly equal to one. In dimension one though, the problem quickly appeared to
be extremely difficult, and it took a very long time until progress was made. One
of the major advances was the proof of the so-called Vitushkin conjecture by David
[6] in 1998.

Theorem 6.1 (Vitushkin’s conjecture). Let E be a compact set with finite one-

dimensional Hausdorff measure. Then E is removable if and only if E is purely

unrectifiable, i.e. it intersects every rectifiable curve in a set of zero one-dimensional

Hausdorff measure.

The forward implication was previously known as Denjoy’s conjecture and in
fact follows from the results of Calderón on the L2-boundedness of the Cauchy
transform operator. We also mention that the converse implication is false without
the assumption that E has finite length, see [14]

In order to obtain a characterization of removable sets in the case of dimension
one but infinite length, Tolsa [26] proved that analytic capacity is comparable to
a quantity which is easier to comprehend as it is more amenable to real analysis
tools. More precisely, define the γ+-capacity of a compact set E by

γ+(E) := sup{µ(E) : suppµ ⊂ E, |Cµ| ≤ 1 on Ĉ \ E},
where µ is a positive Radon measure supported on E. Clearly, we have γ+(E) ≤
γ(E). Note also that the supremum in the definition of γ+ is always attained by
some measure, by a standard weak∗ convergence argument.

Theorem 6.2 (Tolsa [26]). There is a universal constant C such that

γ(E) ≤ Cγ+(E).

This remarkable result has several important consequences. For instance, it gives
a complete solution to Painlevé’s problem for arbitrary compact sets, involving the
notion of curvature of a measure introduced by Melnikov [18]. The curvature c(µ)
of a positive Radon measure µ is defined by

c(µ)2 :=

∫ ∫ ∫
1

R(x, y, z)2
dµ(x)dµ(y)dµ(z),

where R(x, y, z) is the radius of the circle passing through x, y, z. Also, recall that
µ has linear growth if there exists a constant C such that µ(D(z, r)) ≤ Cr for all
z ∈ C and all r > 0.

Theorem 6.3 (Tolsa [26]). A compact set E ⊂ C is not removable if and only

if it supports a nontrivial positive Radon measure with linear growth and finite

curvature.
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Another importance consequence of Theorem 6.2 is the semi-additivity of ana-
lytic capacity, as mentioned in Section 4.

6.2. The Cauchy capacity. We can now define the Cauchy capacity. Given a
compact set E ⊂ C, the Cauchy capacity of E, noted by γc(E), is defined by

γc(E) := sup{|µ(E)| : suppµ ⊂ E, |Cµ| ≤ 1 on C∞ \ E},
where µ is a complex Borel measure supported on E. In other words, the Cauchy
capacity is defined in the same way as γ+, except that complex measures are allowed.
Note that

γ+(E) ≤ γc(E) ≤ γ(E) ≤ Cγ+(E) ≤ Cγc(E)

for any compact set E, where C is the constant of Theorem 6.2. In particular, the
capacities γ, γ+, γc vanish simultaneously, which is already a deep result.

As far as we know, the following question was raised by Murai [19]. See also [15],
[16] and [25, Section 5].

Problem 6.4. Is analytic capacity actually equal to the Cauchy capacity? In other

words, is it true that

(8) γ(E) = γc(E)

for all compact sets E ⊂ C?

In other words, Problem 6.4 asks whether the supremum in the definition of
analytic capacity remains unchanged if we only consider bounded analytic func-
tions which are Cauchy transforms of complex measures supported on the set. In
particular, Equation (8) holds for E if every bounded analytic function on C \ E
vanishing at ∞ is the Cauchy transform of a complex measure supported on E.
This is the case if, for instance, E has finite one-dimensional Hausdorff measure,
or, more generally, if it has finite Painlevé length, meaning that there is a number
l such that every open set U containing E contains a cycle Γ surrounding E that
consists of finitely many disjoint analytic Jordan curves and has length less than l.
The fact that γ = γc for such sets is easily derived from Cauchy’s integral formula
and a weak∗ convergence argument.

Proposition 6.5. If E has finite Painlevé length, then γ(E) = γc(E).

See [30] for a generalization to compact sets of σ-finite Painlevé length, in a
sense.

Note that every compact set in the plane can be obtained as a decreasing se-
quence of compact sets with finite Painlevé length. In particular, by outer regularity
of analytic capacity, a positive answer to Problem 6.4 would follow if one could prove
that the Cauchy capacity is also outer regular.

Problem 6.6. Is it true that if En ↓ E, then γc(En) ↓ γc(E)?

6.3. Is the Ahlfors function a Cauchy transform? In Proposition 6.5, not
only the Ahlfors function but every bounded analytic function on C \ E vanishing
at ∞ is the Cauchy transform of a complex measure supported on E. From the
point of view of Problem 6.4, a more interesting question is whether the Ahlfors
function can always be expressed as the Cauchy transform of a complex measure
supported on the set. This was, however, answered in the negative by Samokhin.
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Theorem 6.7 (Samokhin [22]). There exists a connected compact set F with con-

nected complement such that the Ahlfors function for F is not the Cauchy transform

of any complex Borel measure supported on F .

In particular, this implies that γ+(F ) < γ(F ). Indeed, suppose that γ+(F ) =
γ(F ), and let µ be a positive Borel measure supported on F with |Cµ| ≤ 1 on C\F
and µ(F ) = γ+(F ). Then g := C(−µ) is analytic on C \ F and satisfies |g| ≤ 1 on
C \F . But g′(∞) = µ(F ) = γ+(F ) = γ(F ), so that g is the Ahlfors function for F ,
by uniqueness, contradicting Theorem 6.7.

This argument relies on the fact that the supremum in the definition of γ+ is
always attained by some measure, which follows from a standard weak∗ convergence
argument. It is not clear a priori whether this remains true for the Cauchy capacity
γc, since in this case one has to deal with complex measures.

In fact, in [30], we constructed a compact set E for which there is no complex
Borel measure µ supported on E such that

|Cµ(z)| ≤ 1 (z ∈ C \ E)

and µ(E) = γc(E). This follows from the following result, by the same argument
as above.

Theorem 6.8 (Younsi [30]). There exists a connected compact set E with connected

complement such that γ(E) = γc(E), but the Ahlfors function for E is not the

Cauchy transform of any complex Borel measure supported on E.

The construction is a bit simpler than the one in [22], which makes it easier to
show that the analytic capacity and the Cauchy capacity of the set are equal. The
set E is the union of the nonrectifiable curve Γ := {x + ix sin (1/x) : x ∈ (0, 1/π]}
and the line segment [−i, i].

Figure 12. The compact set E.

The proof that the Ahlfors function f for E is not a Cauchy transform relies on

the fact that since E is connected, the Ahlfors function is a conformal map of Ĉ\E
onto D (see Subsection 2.2). More precisely, if f = Cµ for some µ supported on
E, then one can use Cauchy’s formula to relate the measure µ on Γ \ {0} with the
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boundary values of f . Combining well-known results on boundary correspondence
under conformal maps with the fact that the curve Γ has infinite length then makes
it possible to show that the total variation of µ must be infinite, a contradiction.

As for the proof that γ(E) = γc(E), it essentially follows from a convergence
result for analytic capacity. For k ∈ N, let Ek be the union of the segment [−i, i]
and the portion of Γ with 1/(π+k) < x ≤ 1/π. Since every Ek has finite length, we
know that γ(Ek) = γc(Ek) ≤ γc(E) for all k, the last inequality because Ek ⊂ E.
It thus only remains to prove that γ(Ek) ↑ γ(E) as k → ∞. Using conformal
invariance, this can be reduced to proving the following lemma.

Lemma 6.9. For k ∈ N, let Fk be a union of two disjoint closed disks. Suppose

that Fk → F , where F is the union of two closed disks intersecting at exactly one

point. Then γ(Fk) → γ(F ).

Lemma 6.9 follows from conformal invariance and the observation that the con-
clusion holds if we replace disks by intervals contained in the same horizontal line,
by Pommerenke’s theorem (see Subsection 2.2). This completes the sketch of the
proof of Theorem 6.8.

6.4. Convergence results for analytic capacity. The proof of Theorem 6.8
shows how even simple questions related to convergence of analytic capacity can
be difficult. For example, we do not know whether Lemma 6.9 remains true if the
number of disks is bigger than two.

Problem 6.10. Does the conclusion of Lemma 6.9 still hold if each Fk is instead

assumed to be a union of n disks, n ≥ 3, and one pair of disks intersect at one

point in the limit?

It would be interesting to study this problem numerically using the method of
Section 3 for the computation of analytic capacity.

Another open problem is the inner-regularity of analytic capacity.

Problem 6.11. Suppose that En ↑ E, where E and the En’s are compact. Does

γ(En) ↑ γ(E)?

This should hold if analytic capacity is truly a capacity, in the sense of Choquet.
It is rather unfortunate that this remains unknown!

Finally, we end this section by mentioning that it would be interesting to develop
a numerical method for the computation of the capacities γ+ or γc, similar to the
one from [28] for analytic capacity. A first step would be to settle the following
question which, as far as we know, is still unanswered.

Problem 6.12. Is the capacity γ+ always attained by a unique measure?
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