
PEANO CURVES IN COMPLEX ANALYSIS

MALIK YOUNSI

Abstract. A Peano curve is a continuous function from the unit interval
into the plane whose image contains a nonempty open set. In this note, we
show how such space-filling curves arise naturally from Cauchy transforms in
complex analysis.

1. Introduction.

A Peano curve (or space-filling curve) is a continuous function f : [0, 1] → C,
where C denotes the complex plane, such that f([0, 1]) contains a nonempty open
set.

The first example of such a curve was constructed by Peano [6] in 1890, motivated
by Cantor’s proof of the fact that the unit interval and the unit square have the
same cardinality. Indeed, Peano’s construction has the property that f maps [0, 1]
continuously onto [0, 1] × [0, 1]. Note, however, that topological considerations
prevent such a function f from being injective.

One year later, in 1891, Hilbert [3] constructed another example of a space-filling
curve, as a limit of piecewise-linear curves. Hilbert’s elegant geometric construction
has now become quite classical and is usually taught at the undergraduate level.

Figure 1. The first six steps of Hilbert’s iterative construction of
a Peano curve.

However, much less known is the fact that Peano curves can be obtained by
the use of complex-analytic methods, more precisely, from the boundary values of
certain power series defined on the unit disk. This was observed by Salem and
Zygmund in 1945 in the following theorem:
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Theorem 1.1 (Salem–Zygmund [9]). Let f(z) =
∑

k akz
nk be a lacunary power

series, meaning that there is a constant λ > 1 such that

nk+1

nk
≥ λ (k ≥ 1).

Suppose moreover that
∑

k |ak| < ∞, so that f defines a continuous function on

the closed unit disk D that is analytic on D.
Then there is an absolute constant λ0 such that if λ ≥ λ0 and if

∑
k |ak| converges

slowly enough (in some precise sense), then f(∂D) contains a nonempty open set.

Note that if f is as in Theorem 1.1, then t 7→ f(e2πit) defines a Peano curve, by
definition.

A few years later, in 1952, Piranian, Titus and Young [8] gave a particularly
simple example showing that one can construct f such that f(∂D) = f(D) =
[0, 1] × [0, 1]. This was later extended to a whole class of series by Schaeffer [10].
See also [4] for other results on Peano curves and power series, as well as [2] and
[7] for Peano curves arising from function algebras.

The purpose of this note is to show that Peano curves can also be constructed
using Cauchy integrals. The proof relies on a surprisingly little-known folklore
theorem from complex analysis as well as on a classical lemma in geometric measure
theory due to Frostman.

2. A folklore theorem.

In the following, we denote the Riemann sphere by Ĉ = C ∪ {∞}.

Theorem 2.1. Let E ⊂ C be a nonempty compact set, and let f : Ĉ → Ĉ be a

bounded continuous function analytic on Ĉ \ E. Then

f(E) = f(Ĉ).

In other words, every value taken by f in the sphere is also taken by f in E.

Theorem 2.1 appears in Browder’s textbook on function algebras [1, Lemma
3.5.4] in the case where E has empty interior, with some details left to the reader.
We supply all the details in the general case for the sake of convenience.

Proof. Clearly f(E) ⊂ f(Ĉ). For the other inclusion, let w ∈ Ĉ. We have to show

that if w ∈ f(Ĉ), then there exists z ∈ E with f(z) = w. Replacing f by f − w if
necessary, we may assume that w = 0.

Suppose, in order to obtain a contradiction, that f has a zero in Ĉ but no zero
in E. First, note that f cannot have zeros tending to ∞. Indeed, if this were
the case, then f would have a nonisolated zero at ∞, in which case we would

have f ≡ 0 on Ĉ \ E and hence f ≡ 0 on ∂E ⊂ E by continuity, contradicting
our assumption. It follows that f can have only finitely many zeros in the whole
sphere, since otherwise a sequence of zeros would accumulate at a point of E and
f would vanish at that point, again by continuity. Let z1, . . . , zn denote the zeros
of f , listed with multiplicities, and define

g(z) :=
f(z)

(z − z1) · · · (z − zn)
(z ∈ Ĉ).
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We do not include any zj equal to ∞ in the above formula for g. In particular, we
may have g = f , if f has only one zero, at ∞.

Now, note that g is a continuous and nonvanishing function in the plane, and
therefore has a continuous logarithm h : C → C. Moreover, the function h is neces-
sarily analytic outside E, since g is analytic there. We claim that this contradicts
the fact that g(∞) = 0. Indeed, in order to see this, we consider the type of iso-
lated singularity that h has at ∞ (i.e., the singularity of h(1/z) at z = 0). If ∞
is a removable singularity of h, then the limit limz→∞ h(z) exists, in which case
limz→∞ g(z) = limz→∞ eh(z) would be a nonzero complex number, a contradiction.
If h has an essential singularity at ∞, then by the Casorati–Weierstrass theorem,
the set h({|z| > R}) for R > 0 large enough is dense in C, again contradicting the
fact that limz→∞ eh(z) = 0. The only remaining possibility is that ∞ is a pole of
h. In this case, there exists some integer n ≥ 1 and some nonzero complex number
α such that

lim
|z|→∞

h(z)

zn
= α.

Write α = |α|eiθ, where θ is the argument of the complex number α. Then we have

lim
|z|→∞

h(|z|e−iθ/n)

(|z|e−iθ/n)n
= |α|eiθ,

so that in particular there exists M > 0 such that

Re(h(|z|e−iθ/n)) ≥
1

2
|α||z|n (|z| > M).

Taking the exponential and noting that |g| = |eh| = eReh gives

|g(|z|e−iθ/n)| ≥ e
1

2
|α||z|n (|z| > M).

This contradicts the fact that the left-hand side tends to 0 as |z| → ∞.

Since all possible cases lead to a contradiction, we get that f(E) = f(Ĉ), as
required.

�

Remark. Theorem 2.1 is clearly interesting only if f is not constant. In this case,

the set f(Ĉ) is open, by the open mapping theorem. In particular, the set f(E)
has non-empty interior, even though E may not!

The above remark raises the following question: For which compact sets E does

there exist a nonconstant bounded continuous function f : Ĉ → Ĉ that is analytic
outside E? Can we find such sets with empty interior?

As we shall see in the next section, the answer is affirmative.

3. Peano curves from Cauchy integrals.

Theorem 3.1. Let E ⊂ C be compact. Suppose that E has empty interior and
that its Hausdorff dimension satisfies dimH(E) > 1. Then there exists a bounded

continuous function f : Ĉ → Ĉ, analytic on Ĉ \E, that is not constant.

Remark. In other words, compact sets of dimension bigger than one are nonre-
movable for bounded continuous functions analytic outside the set. On the other
hand, a well-known result generally attributed to Painlevé states that compact sets
of Hausdorff dimension less than one are removable [11, Corollary 2.8]. This case
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is not interesting from the point of view of Theorem 2.1, since for such sets only
constant functions satisfy the assumptions.

For example, in Theorem 3.1, one could take E to be a fractal curve Γ with
Hausdorff dimension strictly between one and two, such as the Koch snowflake for
instance. Combining Theorem 3.1 with Theorem 2.1 then yields examples of Peano
curves.

Corollary 3.2. Let Γ be any curve with 1 < dimH(Γ) < 2, and let f be as in
Theorem 3.1. Then f(Γ) is a Peano curve.

4. Proof of Theorem 3.1.

For the proof of Theorem 3.1, we construct the function f as a Cauchy-type
integral.

Suppose that E ⊂ C is a compact set with empty interior, and let µ be a
nontrivial Radon measure supported on E. The function

(1) Cµ(z) :=

∫

E

dµ(ζ)

ζ − z
(z ∈ Ĉ \ E)

is called the Cauchy transform of the measure µ. By differentiating under the inte-
gral sign, one easily sees that Cµ defines an analytic function outside E. Moreover,
that function is not constant, since

lim
z→∞

Cµ(z) = 0,

whereas

lim
z→∞

zCµ(z) = −µ(E) 6= 0.

Cauchy transforms are therefore good candidates for the function f in Theorem 3.1.
The problem, however, is that in general Cµ may not bounded, let alone continuous
on the sphere. For this to hold, we need additional assumptions on the measure µ.

Lemma 4.1. Let E ⊂ C be a compact set with empty interior, and let µ be a
nontrivial Radon measure supported on E. Suppose moreover that µ satisfies the
growth condition

µ(D(z0, r)) ≤ rs (z0 ∈ C, r > 0),

for some 1 < s < 2. Then the Cauchy transform Cµ defined by (1) is a nonconstant

analytic function on Ĉ \ E that extends to a bounded continuous function on Ĉ.

Proof. We already mentioned that Cµ is analytic outside E and not constant.
We show that the growth property of µ implies that Cµ is Hölder continuous

outside E, so that in particular it extends to a bounded continuous function on the
whole sphere, by uniform continuity. The argument is quite standard, see e.g., [11,
Theorem 2.10]. Fix z, w ∈ C \ E, z 6= w, and write δ := |z − w|. Then

|Cµ(z)− Cµ(w)| ≤ δ

∫
dµ(ζ)

|ζ − z||ζ − w|
.

We split the integral over the four disjoint sets
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A1 := {ζ ∈ E : |ζ − z| < δ/2},

A2 := {ζ ∈ E : |ζ − w| < δ/2},

A3 := {ζ ∈ E : |ζ − z| ≤ |ζ − w|, |ζ − z| ≥ δ/2},

A4 := {ζ ∈ E : |ζ − z| > |ζ − w|, |ζ − w| ≥ δ/2}.

On A1, |ζ − w| > δ/2, so we have

δ

∫

A1

dµ(ζ)

|ζ − z||ζ − w|
≤ 2

∫

A1

∫ ∞

|ζ−z|

t−2dt dµ(ζ)

= 2

∫

A1

∫ δ/2

|ζ−z|

t−2dt dµ(ζ) + 2

∫

A1

∫ ∞

δ/2

t−2dt dµ(ζ)

≤ 2

∫ δ/2

0

µ(D(z, t))t−2dt+ 4δ−1µ(A1)

≤ 2

∫ δ/2

0

ts−2dt+ 4δ−1δs2−s

= Cδs−1,

where C is independent of δ. Similarly for the integral over A2. For the integral
over A3, we have

δ

∫

A3

dµ(ζ)

|ζ − z||ζ − w|
≤ δ

∫

{|ζ−z|≥δ/2}

dµ(ζ)

|ζ − z|2

= 2δ

∫ ∞

δ/2

µ({δ/2 ≤ |ζ − z| < t})t−3dt

≤ 2δ

∫ ∞

δ/2

ts−3dt

= C′δs−1.

Here we used the fact that s < 2. Similarly for the integral over A4.
This completes the proof of the lemma. �

The final ingredient for the proof of Theorem 3.1 is the following consequence of
a classical result of Frostman.

Lemma 4.2 (Frostman’s lemma). Let E ⊂ C be a compact set such that dimH(E) >
1. Then for any 1 < s < dimH(E), there exists a nontrivial Radon measure µ sup-
ported on E with growth

µ(D(z0, r)) ≤ rs (z0 ∈ C, r > 0).

Proof. See e.g., [5, Theorem 8.8].
�

Theorem 3.1 now follows directly from Lemma 4.1 and Lemma 4.2.
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Proof. Let µ be as in Lemma 4.2. Then by Lemma 4.1, the function f = Cµ is a

bounded continuous function on the whole sphere which is analytic on Ĉ \ E, but
not constant. �
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