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Abstract. We present a comprehensive survey on removability of compact

plane sets with respect to various classes of holomorphic functions. We also

discuss some applications and several open questions, some of which are new.

1. Introduction

A classical theorem generally attributed to Riemann asserts that every bounded
holomorphic function on some open subset of the plane minus a point extends
analytically to the whole open set. In other words, single points are removable
for bounded holomorphic functions. A repeated application of Riemann’s theorem
obviously shows that any finite set is removable, so is any countable compact set, by
a simple argument involving the Baire category theorem. What about uncountable
compact sets? Is it possible to find a geometric characterization of those that are
removable? This difficult problem dates back to Painlevé in 1888, who was the
first one to investigate the properties of the compact plane sets that are removable
for bounded holomorphic functions. Since then, the study of removable sets has
been extended to several other classes of holomorphic functions. Understanding the
properties of removable sets with respect to each of these classes has proven over the
years to be of fundamental importance. Indeed, in many situations, the possibility
of extending a function defined outside a compact set is somehow independent of
the particular function but rather depends on which class it belongs to and on the
geometric properties of the set.

The purpose of this article is to present a comprehensive survey on removability
with respect to various classes of holomorphic functions, including proofs of some
results that are probably well-known to experts but do not appear in the literature,
as far as we know. Our main motivation comes from the fact that although there
have been some excellent surveys on removable sets, each of them is either outdated
or centered on only one type of removability. Moreover, some of the widely used
removability results are essentially folklore theorems and our intention is to give
rigorous proofs. Actually, as we will see, some statements have sometimes been
taken for granted because they seem almost trivial at first glance, yet no rigorous
and correct proof exists to the best of our knowledge. Another important motivation
is that several people have expressed their interest in such a survey, particularly
for the more modern notion of conformal removability, which appears naturally in
holomorphic dynamics. Indeed, it frequently happens that two dynamical systems
are conjugated by some homeomorphism of the sphere which is (quasi)conformal
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outside the Julia set. If the latter is conformally removable, then the conjugation
is in fact (quasi)conformal everywhere. Lastly, we would like to mention that the
subjects treated in this survey reflect the author’s own interests and are by no
means exhaustive. There are several other notions of removability which we will
not discuss, such as removability for boundedK-quasiregular mappings for example.

Let E ⊂ C be compact and let Ω := C∞\E be the complement of E with respect
to the Riemann sphere. We shall be interested mainly in the following classes of
holomorphic functions on Ω :

H∞(Ω) = { f : Ω→ C holomorphic and bounded }
A(Ω) = { f : C∞ → C continuous and holomorphic on Ω }
S(Ω) = { conformal maps f : Ω→ C∞ }

CH(Ω) = { homeomorphisms f : C∞ → C∞ which are conformal on Ω }.

Note that clearly, we have the inclusions

A(Ω) ⊂ H∞(Ω)

and
CH(Ω) ⊂ S(Ω).

Moreover, each of the above classes is monotonic in the sense that if E1 ⊂ E2, then
the class corresponding to Ω1 := C∞ \ E1 is contained in the class corresponding
to Ω2 := C∞ \ E2.

Definition 1.1. Let F be one of the above classes of functions H∞, A, S or CH.
We say that E is F-removable if F(Ω) = F(C∞), in other words, if every function
in F(Ω) is the restriction of an element of F(C∞). More precisely, the compact set
E is H∞, A, S, CH-removable respectively if

• every bounded holomorphic function on Ω is constant;
• every continuous function on C∞ that is holomorphic on Ω is constant;
• every conformal map on Ω is a Möbius transformation;
• every homeomorphism of C∞ onto itself that is conformal on Ω is a Möbius

transformation.

Note that in view of the preceding remarks, H∞-removable sets are A-removable
and S-removable sets are CH-removable. Furthermore, any compact subset of a
removable compact set is also removable, by monotonicity.

The rest of the paper is organized as follows. Sect. 2 is about the study of
H∞-removable sets. We discuss their main properties, particularly from the point
of view of Hausdorff measure and dimension. This section also includes a brief
introduction to analytic capacity and Tolsa’s solution of Painlevé’s problem. In
Sect. 3, we present the main properties of A-removable compact sets, also from the
point of view of Hausdorff measure, as well as a brief introduction to the analogue
of analytic capacity in this new setting. Then, in Sect. 4, we first introduce some
preliminaries on quasiconformal mappings and then proceed with a description of
the properties of S-removable sets, including Ahlfors and Beurling’s characteriza-
tion based on the notion of zero absolute area. The last section, Sect. 5, deals
with CH-removable compact sets. Among other things, we present Jones and
Smirnov’s geometric sufficient condition for CH-removability, as well as Bishop’s
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construction of nonremovable sets of zero area. We also describe some applications
of CH-removability to conformal welding and to the dynamics of complex qua-
dratic polynomials. Finally, the section concludes with a discussion of several open
questions.

2. H∞-removable sets

As mentioned in the introduction, the study of removable sets for bounded holo-
morphic functions has first been instigated by Painlevé [48], who raised the problem
of finding a geometric characterization of H∞-removable compact sets. Moreover,
Painlevé was the first one to observe that there is a close relationship between
removability for H∞ and Hausdorff measure and dimension. More precisely, he
proved that compact sets of zero one-dimensional Hausdorff measure are remov-
able. In particular, compact sets of Hausdorff dimension less than one are H∞-
removable. Unfortunately, the converse is false, as we will see later in this section.
On the other hand, a well-known lemma of Frostman implies that compact sets of
dimension strictly bigger than one are never removable. It follows that one is the
critical Hausdorff dimension from the point of view of removability for bounded
holomorphic functions. In this case, the situation is much more complicated and
Painlevé’s problem quickly turned out to be extremely difficult. As a matter of
fact, it took more than a hundred years until a reasonable solution was obtained,
thanks to the work of David, Tolsa and many others. A fundamental tool in the
study of Painlevé’s problem is the so-called analytic capacity, an extremal problem
introduced by Ahlfors [1] in 1947 which, in some sense, measures the size of a com-
pact set from the point of view of H∞-removability. We shall give a brief overview
of the complete solution to Painlevé’s problem at the end of this section, although
the proofs will be omitted for the sake of conciseness. For more information on this
vast subject, we refer the interested reader to the recent book of Tolsa [62]. See
also [22] and [19].

2.1. Main properties. It follows from the aforementioned theorem of Riemann
and Liouville’s theorem that any single point is H∞-removable. The same argument
obviously shows that every finite set is H∞-removable, so is any countable compact
set, by a simple argument using the Baire category theorem. In fact, we will see
at the end of this subsection that any compact countable union of H∞-removable
sets is also H∞-removable.

Intuitively, one expects H∞-removable sets to be small, at least in some sense.
For instance, it is easy to see that if E is H∞-removable, then its interior must be
empty and its complement Ω = C∞ \ E must be connected. In fact, we have

Proposition 2.1. If E is H∞-removable, then E is totally disconnected.

Proof. If F ⊂ E is a connected component of E containing more than one point,
then by the Riemann mapping theorem there exists a conformal map f : C∞ \F →
D, where D is the open unit disk. Clearly, f is a nonconstant element of H∞(Ω).

�

The following proposition shows that H∞-removability is a local property.

Proposition 2.2. The following are equivalent :

(i) For any open set U with E ⊂ U , every bounded holomorphic function on U \E
extends analytically to an element of H∞(U);
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(ii) E is H∞-removable.

Proof. Clearly (i) implies (ii). The converse is a simple application of Cauchy’s
integral formula. Indeed, suppose that E is removable and let U be an open set
containing E. Let f be any bounded holomorphic function on U\E and fix z ∈ U\E.
Let Γ1 be a cycle in U \ (E ∪ {z}) with winding number one around E ∪ {z} and
zero around C\U . Likewise, let Γ2 be a cycle in U \(E∪{z}) with winding number
one around E and zero around (C \ U) ∪ {z}. Then by Cauchy’s integral formula,
we have

f(z) =
1

2πi

∫
Γ1

f(ζ)

ζ − z
dζ − 1

2πi

∫
Γ2

f(ζ)

ζ − z
dζ := f1(z) + f2(z).

Note that by Cauchy’s theorem, f1(z) and f2(z) do not depend on the precise cycles
Γ1 and Γ2. It follows that f1 and f2 define holomorphic functions on U and C \E
respectively, with f = f1 + f2 on U \ E. Since f1 and f are bounded near E, the
function f2 is also bounded there and so is bounded everywhere outside E. But E
is removable and f2(∞) = 0, hence f2 is identically zero and therefore f1 = f is
the desired bounded analytic extension of f to the whole open set U .

�

A remarkable property of H∞-removable sets is that they are closed under finite
unions.

Proposition 2.3. If E,F are H∞-removable compact sets, then E ∪ F is also
H∞-removable.

Note that if E∩F = ∅, then the result is a direct consequence of Proposition 2.2.
For the general case, we follow the proof in [62, Proposition 1.18]. First, we need
some preliminaries on the Cauchy transform and Vitushkin’s localization operator.

Let µ be a complex Borel measure on C with compact support. The Cauchy
transform of µ is defined by

Cµ(z) :=

∫
1

ζ − z
dµ(ζ).

An elementary application of Fubini’s theorem shows that the above integral con-
verges for almost every z ∈ C with respect to Lebesgue measure. Furthermore, Cµ
is holomorphic outside the support of µ and satisfies Cµ(∞) = 0 and Cµ′(∞) :=
limz→∞ z(Cµ(z)− Cµ(∞)) = −µ(C).

The definition of the Cauchy transform also makes sense if µ is a compactly
supported distribution. In this case, we define

Cµ := −1

z
∗ µ.

The following elementary lemma is well-known, see e.g. [16, Theorem 18.5.4].

Lemma 2.4. We have

∂
1

πz
= δ0

in the sense of distributions, where δ0 is the Dirac delta at the origin. As a conse-
quence, if µ is a compactly supported distribution on C, then

∂(Cµ) = −πµ.



ON REMOVABLE SETS FOR HOLOMORPHIC FUNCTIONS 5

Also, if f ∈ L1
loc(C) is holomorphic on a neighborhood of infinity and f(∞) = 0,

then

C(∂f) = −πf.

Now, given f ∈ L1
loc(C) and φ ∈ C∞c (C), we define Vitushkin’s localization

operator Vφ by

Vφf := φf +
1

π
C(f∂φ).

The same definition holds more generally if f is a distribution.

Lemma 2.5. Let f ∈ L1
loc(C) and φ ∈ C∞c (C). Then

Vφf = − 1

π
C(φ∂f)

in the sense of distributions.

Proof. By Lemma 2.4, we have

∂(Vφf) = f∂φ+ φ∂f +
1

π
∂(C(f∂φ)) = φ∂f = ∂

(
− 1

π
C(φ∂f)

)
.

But both Vφf and − 1
πC(φ∂f) are holomorphic in a neighborhood of ∞ and vanish

at that point, hence these two distributions must be equal, again by Lemma 2.4.
�

Lemma 2.6. Let U ⊂ C be open and let E ⊂ C be compact and H∞-removable.
Then every bounded holomorphic function on U \ E has an analytic extension to
an element of H∞(U).

Note that here it is not assumed that E is contained in U (compare with Propo-
sition 2.2).

Proof. Assume without loss of generality that U is bounded. Consider a grid of
squares {Qj} covering the plane and of side length l. Let {φj} ⊂ C∞c (C) be a
partition of unity subordinated to {2Qj}, i.e. 0 ≤ φj ≤ 1, supp(φj) ⊂ 2Qj for each
j and ∑

j

φj ≡ 1

on C. Let f be any bounded holomorphic function on U \ E. Define f to be zero
on C \ (U \ E). Then Vφjf is identically zero except for finitely many j’s and

f = − 1

π
C(∂f) = − 1

π

∑
j

C(φj∂f) =
∑
j

Vφjf,

where we used Lemma 2.4 and Lemma 2.5. Also, for each j, we have

supp(∂(Vφj
f)) = supp(∂(C(φj∂f))) ⊂ suppφj ∩ supp ∂f ⊂ 2Qj ∩ (E ∪ ∂U).

Hence Vφj
f is holomorphic outside 2Qj ∩E whenever j is such that 2Qj ∩ ∂U = ∅.

Now, note that for every j, 2Qj ∩E is H∞-removable. Moreover, a simple estimate
shows that Vφjf is bounded. It follows that for each j such that 2Qj ∩ ∂U = ∅, the
function Vφj

f must be identically zero, since it vanishes at infinity. Therefore,

f =
∑

j:2Qj∩∂U 6=∅

Vφjf,



6 M. YOUNSI

so that f is holomorphic on U except maybe in a 4l-neighborhood of ∂U . Since l
is arbitrary, we obtain that f is holomorphic on the whole open set U . Finally, it
must be bounded since E has empty interior. �

We can now proceed with the proof of Proposition 2.3.

Proof. Suppose that E and F are H∞-removable compact sets. Let f be any
bounded holomorphic function on C \ (E ∪ F ) = (C \ F ) \ E. By Lemma 2.6, the
function f has a bounded analytic extension to C \ F . Hence f must be constant,
by H∞-removability of F . This shows that E ∪ F is H∞-removable.

�

Remark. A simple argument using Lemma 2.6 and the Baire category theorem
shows that any compact countable union of H∞-removable compact sets is H∞-
removable. Indeed, suppose that E := ∪nEn is compact, where each En is compact
and H∞-removable. Let f be any bounded holomorphic function on Ω := C∞ \E.
Also, let Ω′ be the maximal domain on which f has a bounded analytic extension
(such a domain can be obtained with Zorn’s lemma, for instance). Then Ω ⊂ Ω′.
Assume for a contradiction that Ω′ 6= C∞, i.e. E′ := C∞ \ Ω′ 6= ∅. Since E′ is the
countable union of the compact sets E′∩En, one of these sets must have nonempty
interior in E′, by the Baire category theorem. Hence there exists some n and an
open set U such that U ∩ E′ 6= ∅ and U ∩ E′ ⊂ U ∩ En. Now, the function f
is analytic and bounded on U \ E′ = U \ (E′ ∩ En) and E′ ∩ En is compact and
H∞-removable , so that f has a bounded analytic extension to Ω′ ∪ U by Lemma
2.6. This contradicts the maximality of Ω′. Therefore, we must have Ω′ = C∞
and f has a bounded analytic extention to the whole sphere. This shows that E is
H∞-removable.

Remark. One can prove Proposition 2.3 by exploiting the fact that H∞-removable
compact sets are totally disconnected, as in the proof of Proposition 4.10. However,
the main advantage of the above proof using Vitushkin’s localization operator is
that it is easily generalized to handle A-removable sets, as we will see in Sect. 3.

2.2. Relationship with Hausdorff measure. In this subsection, we study H∞-
removability from the point of view of Hausdorff measure and dimension. More
precisely, we shall see that compact sets of dimension less than one are removable,
whereas those of dimension bigger than one are not.

First, let us recall the definitions of Hausdorff measure and Hausdorff dimension
in the plane. Let F be a subset of the plane. For s ≥ 0 and 0 < δ ≤ ∞, we define

Hsδ(F ) := inf

∑
j

diam(Fj)
s : F ⊂

⋃
j

Fj , Fj ⊂ C,diam(Fj) ≤ δ

 .

The s-dimensional Hausdorff measure of F is

Hs(F ) := sup
δ>0
Hsδ(F ) = lim

δ→0
Hsδ(F ).

The Hausdorff dimension of F is the unique positive number dimH(F ) such that

Hs(F ) =

{
∞ if s < dimH(F )
0 if s > dimH(F ).

The following result is generally attributed to Painlevé.
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Theorem 2.7 (Painlevé). If H1(E) = 0, then E is H∞-removable.

Proof. Let f be any bounded holomorphic function on Ω, say |f | ≤M . Let ε > 0.
Since H1(E) = 0, we can cover E by open disks D1, . . . , Dn of radius r1, . . . , rn
respectively such that

n∑
j=1

rj < ε.

Let Γ be the outer boundary of the union of these disks. Then we have

|f ′(∞)| =
∣∣∣∣ 1

2πi

∫
Γ

f(z)dz

∣∣∣∣ ≤M n∑
j=1

rj < Mε,

where f ′(∞) := limz→∞ z(f(z) − f(∞)). As ε > 0 is arbitrary, this shows that
f ′(∞) = 0, for every bounded holomorphic function f on Ω. It follows that E is
H∞-removable. Indeed, if f is a nonconstant bounded holomorphic function on Ω,
then there is a point z0 ∈ Ω with f(z0) 6= f(∞), but then the function

z 7→ f(z)− f(z0)

z − z0

is a bounded holomorphic function on Ω whose derivative at infinity is nonzero.
�

Corollary 2.8. If dimH(E) < 1, then E is H∞-removable.

It is natural to ask whether the converse of Theorem 2.7 holds, as this would
yield an elegant solution to Painlevé’s problem. Unfortunately, there are examples
of H∞-removable compact sets with positive one-dimensional Hausdorff measure.
The first one was given by Vitushkin in 1959. The construction is the following.
Let (an) be a nondecreasing sequence of integers, with a1 ≥ 2. Set E0 := [0, 1] and
E1 := ∪a1k=1({1/k} × [0, 1/a1]). For n ≥ 2, obtain En from En−1 by repeating this
process with each interval in En−1 but using an. If E is the limit set obtained,
then for every choice of the sequence (an), we have H1(E) > 0. Vitushkin [65]
gave a rather complicated proof that E is H∞-removable if an → ∞ as n → ∞.
Garnett [23] used a much simpler argument to show that E is also H∞-removable
in the case where the sequence (an) is eventually constant. Moreover, he observed
that the planar Cantor quarter set is another example of H∞-removable compact
set with positive one-dimensional Hausdorff measure. See [22, Chapter IV] for
more information. We also mention [42], which contains a characterization of H∞-
removable planar Cantor sets in terms of the ratio sequence.

On the other hand, linear compact sets are H∞-removable precisely when they
have zero length.

Proposition 2.9. Suppose that E is contained in the real line. Then E is H∞-
removable if and only if its one-dimensional Lebesgue measure is zero.

Proof. If the measure of E is zero, then E must be H∞-removable by Theorem 2.7.
Conversely, if the measure of E is positive, consider the function

f(z) :=

∫
E

dt

t− z
(z ∈ Ω),

which is just the Cauchy transform of the characteristic function of E times the
Lebesgue measure on R. Then f is holomorphic on Ω, f(∞) = 0 and f ′(∞) < 0,
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hence f is nonconstant. Moreover, a simple calculation shows that the imaginary
part of f is bounded on Ω, thus g := eif is a nonconstant bounded holomorphic
function on Ω. It follows that E is not H∞-removable. �

Corollary 2.8 shows that compact sets of sufficiently small dimension are remov-
able. On the other hand, the following theorem states that compact sets of large
enough dimension cannot be removable.

Theorem 2.10. If dimH(E) > 1, then E is not H∞-removable.

Proof. By Frostman’s lemma (see e.g. [62, Theorem 1.23]), there exists a nontrivial
positive Borel measure µ supported on E with growth µ(D(z0, r)) ≤ rs for all
z0 ∈ C, r > 0, for some 1 < s < 2. Consider the function

f(z) := Cµ(z) =

∫
dµ

ζ − z
(z ∈ Ω).

Then f is a nonconstant holomorphic function on Ω. Let us prove that the growth
property of µ implies that f is Hölder continuous on Ω. Fix z, w ∈ Ω and write
δ := |z − w|. Then

|f(z)− f(w)| ≤ δ
∫

dµ(ζ)

|ζ − z||ζ − w|
.

We separate the integral over the four disjoint sets :

A1 := {ζ ∈ E : |ζ − z| < δ/2}
A2 := {ζ ∈ E : |ζ − w| < δ/2}
A3 := {ζ ∈ E : |ζ − z| ≤ |ζ − w|, |ζ − z| ≥ δ/2}
A4 := {ζ ∈ E : |ζ − z| > |ζ − w|, |ζ − w| ≥ δ/2}.

On A1, |ζ − w| > δ/2, so we have

δ

∫
A1

dµ(ζ)

|ζ − z||ζ − w|
≤ 2

∫
A1

∫ ∞
|ζ−z|

t−2dt dµ(ζ)

= 2

∫
A1

∫ δ/2

|ζ−z|
t−2dt dµ(ζ) + 2

∫
A1

∫ ∞
δ/2

t−2dt dµ(ζ)

≤ 2

∫ δ/2

0

µ(D(z, t))t−2dt+ 4δ−1µ(A1)

≤ 2

∫ δ/2

0

ts−2dt+ 4δ−1δs2−s

= Cδs−1,



ON REMOVABLE SETS FOR HOLOMORPHIC FUNCTIONS 9

where C is independent of δ. Similarly for the integral over A2. For the integral
over A3, we have

δ

∫
A3

dµ(ζ)

|ζ − z||ζ − w|
≤ δ

∫
{|ζ−z|≥δ/2}

dµ(ζ)

|ζ − z|2

= 2δ

∫ ∞
δ/2

µ({δ/2 ≤ |ζ − z| < t})t−3dt

≤ 2δ

∫ ∞
δ/2

ts−3dt

= C ′δs−1.

Here we used the fact that s < 2. Similarly for the integral over A4.
Combining the integrals together shows that f is Hölder continuous on Ω and

therefore extends continuously to a bounded function on C∞. In particular, f is a
nonconstant bounded holomorphic function on Ω and E is not H∞-removable.

�

Remark. It is easier to prove directly that f is bounded, as in [62, Theorem 1.25].
However, the fact that f extends continuously to the whole Riemann sphere shows
that E is not even removable for the class A.

2.3. The case of dimension one. We proved in the preceding subsection that
compact sets of dimension less than one are H∞-removable whereas sets of dimen-
sion bigger than one are not. Painlevé’s problem is thus reduced to the case of
dimension exactly equal to one. In this case, however, the situation is much more
complicated and we shall therefore content ourselves with a brief overview of the
main results, without giving any proof. For the complete story, we refer the reader
to [62].

One of the major advances toward a geometric characterization of H∞-removable
sets of dimension one was the proof of the so-called Vitushkin’s conjecture.

Theorem 2.11 (Vitushkin’s conjecture). Assume that H1(E) < ∞. Then E is
H∞-removable if and only if H1(E ∩ Γ) = 0 for all rectifiable curves Γ.

The forward implication was previously known as Denjoy’s conjecture and follows
from the results of Calderón [12] on the L2-boundedness of the Cauchy transform
operator. The other implication was proved by David [17] in 1998.

In 2000, Joyce and Mörters [33] constructed a nonremovable compact set E which
intersects every rectifiable curve in a set of zero one-dimensional Hausdorff measure,
therefore showing that Vitushkin’s conjecture is false witout the assumption of finite
length.

Vitushkin also conjectured in [66] that a compact set E is H∞-removable if and
only if it has zero Favard length, i.e. it orthogonally projects in almost every di-
rection onto a set of linear Lebesgue measure zero. In 1986, Mattila [43] disproved
this conjecture in a remarkable way. Indeed, he showed that the property of hav-
ing zero Favard length is not conformally invariant, whereas the property of being
H∞-removable clearly is. However, Mattila’s proof gave no indication of which
implication of the conjecture is false! Later, in 1988, Jones and Murai [31] con-
structed a nonremovable compact set with zero Favard length. The aforementioned
set of Joyce and Mörters is also an example. However, it is still open whether the
other implication of the conjecture holds, i.e. whether H∞-removable implies zero
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Favard length. Finally, we mention that by Theorem 2.11, the conjecture is true
for compact sets E with H1(E) <∞, since for such sets having zero Favard length
is equivalent to intersecting every rectifiable curve in a set of zero one-dimensional
Hausdorff measure.

In general, for sets of infinite length, there is no nice characterization of re-
movability such as Theorem 2.11. However, in the remarkable paper [59], Tolsa
obtained a metric characterization of H∞-removability in terms of the notion of
curvature of a measure. Before stating the result, we need some definitions.

Definition 2.12. A positive Borel measure µ on C has linear growth if there exists
some constant C such that µ(D(z, r)) ≤ Cr for all z ∈ C and all r > 0.

Definition 2.13. For a positive Radon measure µ on C, we define the curvature
of µ by

c2(µ) :=

∫ ∫ ∫
1

R(x, y, z)2
dµ(x)dµ(y)dµ(z),

where R(x, y, z) is the radius of the circle passing through x, y, z.

We can now state Tolsa’s result.

Theorem 2.14 (Tolsa [59]). A compact set E ⊂ C is not H∞-removable if and
only if it supports a nontrivial positive Radon measure with linear growth and finite
curvature.

A fundamental ingredient of the proof of Theorem 2.14 is the notion of analytic
capacity, which we now define.

Definition 2.15. The analytic capacity of a compact set E ⊂ C is defined by

γ(E) := sup{|f ′(∞)| : f ∈ H∞(Ω), |f | ≤ 1},

where f ′(∞) = limz→∞ z(f(z)− f(∞)) and Ω = C∞ \ E.

Analytic capacity was first introduced by Ahlfors [1] in 1947 for the study of
Painlevé’s problem, based on the observation that E is H∞-removable if and only
if γ(E) = 0.

The characterization in Theorem 2.14 is a consequence of the comparability
between γ and another capacity γ+ which can be described in terms of measures
with finite curvature and linear growth. Another important consequence of this
comparability is the semiadditivity of analytic capacity, which was conjectured by
Vitushkin [66] in 1967.

Theorem 2.16 (Tolsa [59]). We have

γ(E ∪ F ) ≤ C(γ(E) + γ(F ))

for all compact sets E,F , where C is some universal constant.

Tolsa actually proved that analytic capacity is countably semiadditive.
We also remark that it is not known whether one can take C = 1 in Theorem

2.16, i.e. whether analytic capacity is subadditive. See [68] for more information
on this problem.

Finally, we end this section by mentioning another important result of Tolsa
regarding analytic capacity, which answered a question of Verdera raised in [64].
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Theorem 2.17 (Tolsa [61]). Let φ : C→ C be a bilipschitz map. Then there exists
a positive constant C depending only on the bilipschitz constant of φ such that

C−1γ(E) ≤ γ(φ(E)) ≤ Cγ(E)

for all compact sets E ⊂ C. In particular, the property of being H∞-removable is
bilipschitz invariant.

3. A-removable sets

This section is dedicated to the study of A-removable compact sets. Recall that
a compact set E is A-removable if every continuous function on the sphere that is
holomorphic outside E is constant. It seems that A-removable compact sets were
first studied by Besicovitch [7], who proved that compact sets of σ-finite length
are A-removable. The interest in A-removability was reinvigorated by the work
of Vitushkin [66] several years later, motivated by applications to the theory of
uniform rational approximation of holomorphic functions.

3.1. Main properties. It follows from the inclusion A(Ω) ⊂ H∞(Ω) that a com-
pact set E is A-removable whenever it is H∞-removable. However, the converse is
easily seen to be false. For instance, any segment (or more generally, any analytic
arc) is A-removable by Morera’s theorem but is never H∞-removable. In particular,
A-removable sets need not be totally disconnected.

On the other hand, we will see in this subsection that A-removable sets and
H∞-removable sets share many interesting properties. A first example is the fact
that removability for the class A is also a local property.

Proposition 3.1. The following are equivalent :

(i) For any open set U with E ⊂ U , every continuous function on U which is
holomorphic on U \ E is actually holomorphic on the whole open set U ;

(ii) E is A-removable.

Proof. The proof is exactly the same as in Proposition 2.2. �

We also have the following analogue of Proposition 2.3.

Proposition 3.2. If E and F are A-removable compact sets, then E ∪ F is also
A-removable.

The above is a direct consequence of the following analogue of Lemma 2.6.

Lemma 3.3. Let U ⊂ C be open and let E ⊂ C be compact and A-removable.
Then every continuous function on C∞ that is holomorphic on U \ E is actually
holomorphic on the whole open set U .

Proof. The argument is the same as in Lemma 2.6, except we need the fact that
the functions Vφjf are continuous on some open set containing U ∪ E. But this
follows directly from the definition of Vitushkin’s localization operator

Vφj
f = φjf +

1

π
C(f∂φj)

and from the fact that the integral∫
f(ζ)∂φj(ζ)

ζ − z
dm(ζ)
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depends continuously on z, since f∂φj is bounded. Here m is the two-dimensional
Lebesgue measure.

�

Remark. A simple argument using Lemma 3.3 and the Baire category theorem
shows that any compact countable union ofA-removable compact sets isA-removable.

3.2. Relationship with Hausdorff measure. As for H∞-removability, there is
a close relationship between Hausdorff measure and dimension and A-removability.
Indeed, first note that Theorem 2.7 implies that compact sets of zero one-dimensional
Hausdorff measure are A-removable. In particular, any compact set of Hausdorff
dimension strictly less than one is removable. On the other hand, the proof of
Theorem 2.10 shows that compact sets of Hausdorff dimension strictly bigger than
one are never A-removable. As for sets of dimension exactly equal to one, we have
the following sufficient condition.

Theorem 3.4 (Besicovitch [7]). If H1(E) <∞, then E is A-removable.

Proof. We only give a sketch of the proof. The interested reader may consult [22,
Chapter III, Section II] for all the details.

Let f : C∞ → C be continuous and holomorphic outside E, let ωf : (0,∞) →
[0,∞) denote the modulus of continuity of f

ωf (δ) := sup{|f(z)− f(w)| : |z − w| < δ}

and let h(δ) := δωf (δ). Fix ε > 0 and let S be any square in C. Since h(δ)/δ → 0
as δ → 0 and H1(E) <∞, we can find a cover (Sj)

∞
j=1 of S ∩ E by squares of side

length δj centered at aj with disjoint interiors and contained in S such that∑
j

h(δj) < ε.

Then by Cauchy’s theorem,∣∣∣∣∫
∂S

f(ζ)dζ

∣∣∣∣ =

∣∣∣∣∣∣
∑
j

∫
∂Sj

f(ζ)dζ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j

∫
∂Sj

(f(ζ)− f(aj))dζ

∣∣∣∣∣∣ ≤
∑
j

4h(δj) < 4ε.

Since ε > 0 and S are arbitrary, it follows from Morera’s theorem that f is holo-
morphic everywhere and hence must be constant by Liouville’s theorem.

This shows that E is A-removable.
�

By the remark following the proof of Lemma 3.3, we get

Corollary 3.5. Suppose that E is a compact countable union of compact sets of
finite one-dimensional Hausdorff measure. Then E is A-removable.

We end this subsection by mentioning a characterization of removability for
product sets. If E1 and E2 are two compact subsets of R and E1 is countable, then
E := E1 ×E2 is A-removable by Corollary 3.5. The converse is true provided that
m(E2) > 0.

Theorem 3.6 (Carleson [13]). Let E1, E2 ⊂ R be compact and suppose that
m(E2) > 0. Then E = E1 × E2 is A-removable if and only if E1 is countable.
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3.3. Continuous analytic capacity. This subsection is a brief introduction to
an extremal problem whose solution measures the size of a compact set from the
point of view of A-removability. This extremal problem is usually referred to as
continuous analytic capacity and is the analogue of analytic capacity for the class
A.

Definition 3.7. The continuous analytic capacity of a compact set E ⊂ C is
defined by

α(E) := sup{|f ′(∞)| : f ∈ A(Ω), |f | ≤ 1}.

Continuous analytic capacity was first introduced by Erokhin and Vitushkin
[66] in order to study problems of uniform rational approximation of holomorphic
functions. See also [71],[18] and [21, Chapter VIII] for the applications of continuous
analytic capacity to this type of problem.

It follows easily from the definition that α(E) ≤ γ(E) and that E is A-removable
if and only if α(E) = 0. Unfortunately, unlike analytic capacity, there is no known
geometric characterization of compact sets E such that α(E) = 0. The main recent
advances are again due to Tolsa, who proved that continuous analytic capacity is
(countably) semiadditive and that it is bilipschitz invariant in the sense of Theorem
2.17. See [60] and [61].

4. S-removable sets

This section deals with S-removable compact sets. Recall that a compact set E ⊂
C is S-removable if every conformal map on Ω = C∞\E is a Möbius transformation.

The notion of S-removability was first considered by Sario [52] for the prob-
lem of classifying Riemann surfaces. A couple of years later, in 1950, Alhfors and
Beurling published their seminal paper [3] containing among other things a char-
acterization of S-removable compact sets, which we present below. First, we need
some preliminaries on quasiconformal mappings.

4.1. Preliminaries on quasiconformal mappings. This subsection consists of
a very brief introduction to quasiconformal mappings. For more information, the
reader may consult [2], [4] or [38].

There are several equivalent definitions of quasiconformal mappings. The fol-
lowing is the analytic one.

Definition 4.1. Let K ≥ 1, let U, V be domains in the Riemann sphere and let
f : U → V be an orientation-preserving homeomorphism. We say that f is K-
quasiconformal on U if it belongs to the Sobolev space W 1,2

loc (U) and satisfies the
Beltrami equation

∂f = µ∂f

almost everywhere on U for some measurable function µ with ‖µ‖∞ ≤ K−1
K+1 . In

this case, the function µ is called the Beltrami coefficient of f and is denoted by
µf .

A homeomorphism is conformal if and only if it is 1-quasiconformal. This is
usually referred to as Weyl’s lemma. We will also need the fact that quasiconformal
mappings preserve sets of area zero, in the sense that if E ⊂ U is measurable, then
m(E) = 0 if and only if m(f(E)) = 0, where m is the two-dimensional Lebesgue
measure.

The following fundamental theorem was first proved by Morrey [45] in 1938.
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Theorem 4.2 (Measurable Riemann mapping theorem). Let U be a domain in the
sphere and let µ : U → C be a measurable function with ‖µ‖∞ < 1. Then there
exists a quasiconformal mapping f on U such that µ = µf , i.e.

∂f = µ∂f

almost everywhere on U . Moreover, a quasiconformal mapping g on U satisfies
µg = µ = µf if and only if f ◦ g−1 : g(U)→ f(U) is conformal.

We can now describe the various properties of S-removable sets.

4.2. Main properties. As in Proposition 2.1, any S-removable set must be totally
disconnected. Indeed, if F is a nontrivial connected component of an S-removable
compact set E, then one can use the Riemann mapping theorem to obtain a con-
formal map f on C∞ \ F ⊃ C∞ \ E which is not the restriction of a Möbius
transformation.

Although S-removable sets are totally disconnected, it is interesting to mention
the result of Thurston [58] saying that there exist many connected sets E (even
quasi-intervals) that are not far from being removable in the sense that there is an
ε > 0 such that every conformal map on Ω with Schwarzian derivative less than ε
is a Möbius transformation. Such compact sets are said to have conformally rigid
complement and they are known to have zero area [47].

Proposition 4.3. If E is H∞-removable, then E is S-removable.

Proof. Let f be any conformal map on Ω. Composing f with a Möbius transfor-
mation if necessary, we can assume that f(∞) = ∞. Then f is bounded near E.
Fix some point z0 ∈ Ω and consider the function

z 7→ f(z)− f(z0)

z − z0
.

Clearly, this defines a bounded holomorphic function on Ω, which must be constant
by H∞-removability of E. It follows that f is linear. This shows that E is S-
removable.

�

In particular, by Theorem 2.7, any compact set of zero one-dimensional Hausdorff
measure is S-removable. On the other hand, the following proposition implies that
S-removable sets must be rather small.

Proposition 4.4. If E is S-removable, then the area of E is zero.

Proof. If E has positive area, then by the measurable Riemann mapping theorem
(Theorem 4.2) there exists a quasiconformal mapping f on C∞ such that µf = 1

2χE
almost everywhere. In particular, the map f is conformal outside E and is not a
Möbius transformation, since ∂f 6= 0 on a set of positive measure. Hence E cannot
be S-removable. �

Remark. The above proof actually shows that sets of positive area are never CH-
removable.

Remark. An alternative argument is the following. By a result of [63], a compact
set has zero area if and only if it is removable for Lipschitz functions on the sphere
which are holomorphic outside the set. Therefore, if E has positive area, then there
exists such a function, say f , which is not holomorphic everywhere. It follows that
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if ε > 0 is small enough, then z 7→ z + εf(z) is a non-Möbius homeomorphism of
the sphere conformal outside E.

Remark. An interesting question is the following : if E has positive area, does there
necessarily exist a homeomorphism of the sphere onto itself which is conformal
outside E but is not quasiconformal everywhere? The answer is yes, by a result of
Kaufman and Wu [35] stating that there always exists a function f ∈ CH(Ω) which
maps a subset F of E of positive area onto a set of zero area. This map f cannot
be quasiconformal everywhere since it doesn’t preserve sets of measure zero. It is
still open whether one can take F = E in Kaufman and Wu’s result, see [9].

The proof of Proposition 4.4 illustrates the usefulness of quasiconformal map-
pings in the study of S-removable sets. This motivates the following definition.

Definition 4.5. We say that a compact set E ⊂ C is QC-removable if every
quasiconformal mapping on C∞ \ E has a quasiconformal extension to the whole
Riemann sphere.

The following result essentially says that the property of being QC-removable is
local.

Proposition 4.6. The following are equivalent :

(i) For any open set U with E ⊂ U , every quasiconformal mapping on U \ E
extends quasiconformally to the whole open set U ;

(ii) E is QC-removable.

Proof. The direct implication is trivial, while the converse follows from classical
quasiconformal extension theorems, see e.g. [38, Chapter II, Theorem 8.3].

�

It is a remarkable consequence of the measurable Riemann mapping theorem
that the notions of QC-removability and S-removability actually coincide.

Proposition 4.7. A compact set E is QC-removable if and only if it is S-removable.

Proof. Assume that E is QC-removable. First note that the area of E must be
zero, by a classical result of Koebe saying that every planar domain can be mapped
conformally onto the complement of a set of zero area. Now, if f is any conformal
map on Ω, then in particular f is quasiconformal outside E so that it extends
quasiconformally to the whole sphere, by QC-removability of E. But then by Weyl’s
lemma, the map f must be a Möbius transformation. Thus E is S-removable.

Conversely, if E is S-removable, let g be any quasiconformal mapping on Ω. By
Theorem 4.2, there exists a quasiconformal mapping f : C∞ → C∞ such that f ◦g is
conformal on Ω. Since E is S-removable, the map f ◦ g is a Möbius transformation
and thus g = f−1 ◦ (f ◦ g) extends quasiconformally to the whole sphere. Since g
was arbitrary, we get that E must be QC-removable.

�

An interesting consequence of the above result is that Proposition 4.6 remains
true without the assumption that E ⊂ U in (i). Before proving this, we need the
following topological lemma.

Lemma 4.8. Let X be a totally disconnected compact Hausdorff space. Suppose
that F1 and F2 are two disjoint closed subsets of X. Then there exist disjoint closed
subsets X1 and X2 of X such that X = X1 ∪X2, F1 ⊂ X1 and F2 ⊂ X2.
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Proof. The result easily follows from the fact that such spacesX are zero-dimensional.
�

We can now prove the following generalization of Proposition 4.6.

Proposition 4.9. The following are equivalent :

(i) For any open set U ⊂ C, every quasiconformal mapping on U \ E extends
quasiconformally to the whole open set U ;

(ii) E is S-removable.

Proof. The direct implication follows trivially from Proposition 4.7. Conversely,
assume that E is S-removable. Let U be any open set, let f be a quasiconformal
mapping on U \ E and let ε > 0. Define F1 := {z ∈ E : dist(z,C \ U) ≥ ε} and
F2 := E \U . Then F1 and F2 are two disjoint closed subsets of E, so by Lemma 4.8
there exist two disjoint closed subsets of E, say E1 and E2, such that E = E1∪E2,
F1 ⊂ E1 and F2 ⊂ E2. Here we used the fact that S-removable sets are totally
disconnected. By Proposition 4.7, E1 is QC-removable. Since f is quasiconformal
on (U \ E2) \ E1 and E1 is a compact subset of the open set U \ E2, it follows
from Proposition 4.6 that f extends quasiconformally to U \ E2. This extension
is well-defined for every z ∈ U such that dist(z,C \ U) > ε, independently of the
precise value of ε since E has empty interior. Since ε > 0 was arbitrary, we get that
f extends quasiconformally to the whole open set U .

�

As in Proposition 2.3 and Proposition 3.2, we can deduce from this that unions
of removable sets are removable.

Proposition 4.10. If E and F are S-removable compact sets, then E ∪ F is also
S-removable.

Proof. Any conformal map on C∞\(E∪F ) = (C∞\E)\F extends quasiconformally
to C∞ \E and then to the whole sphere, by Proposition 4.9. Since E ∪ F has zero
area, the extension must be conformal everywhere.

�

Remark. Again, a simple argument using Proposition 4.9 and the Baire category
theorem shows that any compact countable union of S-removable compact sets is
S-removable.

4.3. A characterization of removability. In this subsection, we present a char-
acterization of S-removable sets due to Ahlfors and Beurling [3] and based on ideas
of Grunsky. First, we need a definition.

Definition 4.11. We say that a compact set E has absolute area zero if for every
conformal map f ∈ S(Ω), the complement of f(Ω) has measure zero.

Note that sets of absolute area zero must be totally disconnected. We also
mention that a sufficient condition for a set E to have absolute area zero in terms of
the moduli of nested annuli surrounding each point of E can be found in McMullen’s
book [44, Theorem 2.16].

Theorem 4.12 (Ahlfors–Beurling [3]). A compact set E ⊂ C is S-removable if
and only if it has absolute area zero.
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Note that the direct implication follows from Proposition 4.4. Indeed, if E is
S-removable, then it must have zero area and every conformal map f on Ω is a
Möbius transformation, so that C∞ \ f(Ω) = f(E) has zero area.

For the converse, we follow [3] and introduce two extremal problems.
Let E ⊂ C be compact and as usual denote by Ω the complement of E in the

Riemann sphere. We assume that Ω is connected. Define

η(E) := sup |f ′(∞)|,

where the supremum is taken over all holomorphic functions f on Ω with f(∞) = 0
and whose Dirichlet integral D(f) satisfies

D(f) :=

∫
Ω

|f ′|2dm ≤ π.

Also, let

β(E) := sup |f ′(∞)|,
where the supremum is taken over all conformal maps f ∈ S(Ω) with f(∞) = 0
and having the property that the complement of (1/f)(Ω) has area greater or equal
to π. If there is no such function, we set β(E) = 0.

Ahlfors and Beurling’s remarkable result states that η(E) and β(E) are actually
equal, for any compact set E. This implies the reverse implication in Theorem
4.12. Indeed, suppose that E has absolute area zero. Then Ω is connected and
0 = β(E) = η(E). Let f be conformal on Ω. Without loss of generality, assume
that f(∞) =∞. Then f is bounded near E, so its Dirichlet integral there is finite.
Then, since η(E) = 0, a simple modification of the proof of Proposition 2.2 shows
that f has an analytic extension to the whole complex plane. This extension must
be conformal, so that f is linear. Therefore E is S-removable.

Theorem 4.13 (Ahlfors–Beurling [3]). For any compact set E, we have

η(E) = β(E).

Proof. We only give a sketch of the proof.
By a simple normal family argument, it suffices to prove the result for compact

sets E that are bounded by finitely many disjoint analytic Jordan curves. In this
case, there exist conformal maps g and h of Ω onto domains bounded by horizontal
slits and vertical slits respectively with normalization

g(z) = z +
a

z
+
a2

z2
+ . . .

and

h(z) = z +
b

z
+
b2
z2

+ . . .

near infinity. In this case, the maps g and h are unique, see e.g. [25, Chapter 5,
Section 2].

Let Γ denote the boundary of Ω oriented positively and let f be any function
regular on Ω and holomorphic on Ω with f(∞) = 0 and D(f) ≤ π. A simple
calculation using Green’s theorem and the Cauchy-Riemann equations shows that∫∫

Ω

f ′(z)(g′(z)− h′(z))dx dy =
i

2

∫
Γ

f(dg − dh).
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Since g(Ω) is a horizontal slit domain and h(Ω) is a vertical slit domain, we have
dg = dg and dh = −dh on Γ, thus we obtain

(1)

∫∫
Ω

f ′(z)(g′(z)− h′(z))dx dy =
i

2

∫
Γ

f(dg + dh) = 2πf ′(∞),

where we used the fact that∫
Γ

f(z)(g′(z) + h′(z))dz = −2πi(f(g′ + h′))′(∞) = −4πif ′(∞).

Replacing f by g − h in (1) yields

D(g − h) = 2π(a− b).

Now, by (1) and the Cauchy-Schwarz inequality, we get

4π2|f ′(∞)|2 ≤ 2π(a− b)D(f) ≤ 2π2(a− b)

and thus

|f ′(∞)| ≤
√
a− b

2
,

with equality for the function

f =
g − h√
2(a− b)

.

One can prove using some approximation process that the above inequality holds
even for functions f that are only assumed to be holomorphic on Ω. It follows that

η(E) =

√
a− b

2
.

It only remains to show that the same equality holds with η(E) replaced by β(E).
First, we need to introduce two integral quantities. For functions φ, ψ regular on
Ω and holomorphic on Ω except a simple pole at infinity, define

I(φ, ψ) :=
i

2

∫
Γ

φdψ

and

I(φ) :=
i

2

∫
Γ

φdφ = I(φ, φ).

Note that I(φ, ψ) = I(ψ, φ).
Now, let f be regular on Ω and holomorphic on Ω with a simple zero at infinity.

Set φ := 1/f . As in (1), we have

I(φ, g + h) =
i

2

∫
Γ

φ(dg − dh) = −πc(a− b),

where c is the residue of φ at infinity. In particular, this holds for φ = g + h and
thus

I(g + h) = −2π(a− b).
Now, it is easy to see that if φ0 has a removable singularity at infinity, then I(φ0)

is just the Dirichlet integral of φ0. It follows that

I
(
φ− c

2
(g + h)

)
≥ 0.
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Therefore,

I(φ) = I
(
φ− c

2
(g + h)

)
+ I

(
φ,
c

2
(g + h)

)
+ I

( c
2

(g + h), φ
)
− I

( c
2

(g + h)
)

≥ 0− π

2
|c|2(a− b) +

c

2
I(φ, g + h) +

π

2
|c|2(a− b)

= −π
2
|c|2(a− b).

Suppose in addition that f is conformal on Ω and that the area of the complement
of φ(Ω) is greater or equal to π. In this case, Green’s theorem shows that −I(φ)
is precisely the area enclosed by φ(Γ) and hence I(φ) ≤ −π. Combining this with
the preceding inequality, we obtain

1

|c|
≤
√
a− b

2
.

But a simple calculation yields |c| = 1/|f ′(∞)|, so that

(2) |f ′(∞)| ≤
√
a− b

2
.

It follows that

β(E) ≤
√
a− b

2
.

Finally, observe that equality in (2) is attained by the function

f =

√
2(a− b)
g + h

.

Using the argument principle, one can prove that this function is univalent on Ω.
Therefore, we obtain

β(E) =

√
a− b

2
= η(E).

�

5. CH-removable sets

The last section of this article deals with CH-removable sets. Recall that a
compact set E ⊂ C is said to be CH-removable if every homeomorphism of the
sphere onto itself that is conformal outside E is a Möbius transformation.

Besides earlier results on removable product sets by Gehring [24], the notion of
CH-removability (also sometimes referred to as conformal removability or holomor-
phic removability) seems to have first been seriously investigated by Kaufman [34],
who constructed several examples of nonremovable and removable sets. Bishop [9]
later gave another construction of similar sets. In recent years, there has been a
strong renewal of interest in CH-removability, mainly due to its applications in the
theory of holomorphic dynamics. In that respect, we mention the work of Jones
[30] whose results were later generalized by Jones and Smirnov [32]. Furthermore,
Jeremy Kahn introduced in his Ph.D. thesis new dynamical methods to prove that
some Julia sets of complex quadratic polynomials are CH-removable, from which
one can deduce that the boundary of the Mandelbrot set is locally connected at the
corresponding parameters. This is quite reminiscent of Adrien Douady’s philoso-
phy that one “first plows in the dynamical plane and then harvest in the parameter
plane”.



20 M. YOUNSI

5.1. Main properties. Clearly, a compact set E is CH-removable whenever it
is S-removable. In particular, compact sets of absolute area zero are always CH-
removable in view of Theorem 4.12. Moreover, it follows from Proposition 4.3 that
H∞-removable sets are CH-removable. In fact, we have the following stronger
statement.

Proposition 5.1. If E is A-removable, then E is CH-removable.

Proof. The proof is the same as in Proposition 4.3. �

Combining this with Corollary 3.5, we obtain

Corollary 5.2. If E is a compact countable union of compact sets of finite one-
dimensional Hausdorff measure, then E is CH-removable.

A remarkable consequence of the measurable Riemann mapping theorem is that
the property of being CH-removable is quasiconformally invariant.

Proposition 5.3. Let h : C∞ → C∞ be a quasiconformal mapping with h(∞) =∞.
Then E is CH-removable if and only if h(E) is.

Proof. Since the inverse of a quasiconformal mapping is also quasiconformal, it
suffices to prove one of the two implications, say the first one. Assume that E is
CH-removable. Note that E and h(E) must have zero area, by the remark following
Proposition 4.4 and the fact that quasiconformal mappings preserve sets of measure
zero.

Let g : C∞ → C∞ be any homeomorphism conformal outside h(E). By Theorem
4.2, there exists a quasiconformal mapping f : C∞ → C∞ such that µh−1◦g−1 = µf
outside g(h(E)). By the uniqueness part, f ◦ g ◦ h is a homeomorphism of C∞
onto itself which is conformal outside E. Since E is CH-removable, f ◦ g ◦ h must
be conformal everywhere, so that g is quasiconformal on C∞. But g is conformal
outside h(E), a set of zero area, hence it must be conformal everywhere by Weyl’s
lemma. This shows that h(E) is CH-removable.

�

Corollary 5.4. Quasicircles (images of the unit circle under quasiconformal map-
pings of the sphere) are CH-removable.

We also mention that David circles are also CH-removable, see [70]. David circles
are images of the unit circle under so-called David maps, which are generalizations
of quasiconformal mappings where the Beltrami coefficient is allowed to tend to one
in a controlled way.

Now, recall that by Proposition 4.7, it suffices to assume in the definition of
S-removability that the maps are quasiconformal outside the set. In this regard,
the following definition is natural.

Definition 5.5. We say that a compact set E ⊂ C is QCH-removable if every
homeomorphism of C∞ onto itself that is quasiconformal outside E is actually
quasiconformal everywhere.

As in Proposition 4.6, the property of being QCH-removable is local.

Proposition 5.6. The following are equivalent :

(i) For any open set U with E ⊂ U , every homeomorphism f : U → f(U) that is
quasiconformal on U \E is actually quasiconformal on the whole open set U ;
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(ii) E is QCH-removable.

We do not know however if Proposition 5.6 holds without the assumption that
U contains E in (i), see the discussion following Question 5.24.

We also have the following analogue of Proposition 4.7.

Proposition 5.7. A compact set E is QCH-removable if and only if it is CH-
removable.

Proof. The proof is exactly the same as in Proposition 4.7, except for the fact that
QCH-removable sets have zero area, which follows from the third remark following
Proposition 4.4.

�

Remark. Some authors claimed without proof that the direct implication (i.e.
QCH-removability implies CH-removability) follows trivially from the definition.
However, the difficult part is proving that QCH-removable sets have zero area. We
do not know any elementary proof of this fact. Note that instead of resorting to
Kaufman and Wu’s theorem, one can also use known results on David maps.

An important consequence of Proposition 5.7 is that the property of being CH-
removable is invariant under finite disjoint unions.

Corollary 5.8. If E and F are disjoint CH-removable compact sets, then E ∪ F
is CH-removable.

Proof. By Proposition 5.7, it suffices to prove the result for QCH-removability. If
f : C∞ → C∞ is a homeomorphism of the sphere onto itself that is quasiconformal
on C∞ \ (E ∪F ) = (C∞ \E) \F , then by QCH-removability of F and Proposition
5.6, the map f is in fact quasiconformal on C∞\E. Since E is also QCH-removable,
we get that f is actually quasiconformal everywhere.

�

We conclude this subsection with a brief presentation of the removability theo-
rems of Jones and Smirnov [32], which give elegant and geometric sufficient condi-
tions for CH-removability.

First, we need some definitions. For the rest of this subsection, we suppose that
K is the boundary of a domain Ω. We shall also assume for simplicity that Ω is
simply connected, although the following also works for arbitrary domains, with
suitable modifications.

Definition 5.9. A Whitney decomposition of Ω consists of a countable collection
of dyadic squares {Qj} contained in Ω such that

(i) the interiors of the squares are pairwise disjoint;
(ii) the union of their closure is the whole domain Ω;

(iii) for each Qj , we have diam(Qj) ' dist(Qj , ∂Ω).

The existence of such a decomposition is well-known and is usually referred to
as the Whitney covering lemma.

Fix some point z0 ∈ Ω and let Γ := {γz : z ∈ K} be the family of all hyperbolic
geodesics γz connecting z0 to some point z ∈ K.

Definition 5.10. For each Whitney square Qj ⊂ Ω, the shadow of Qj is defined
by

S(Qj) := {z ∈ K : γz ∩Qj 6= ∅}.
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We can now state the main result of [32].

Theorem 5.11 (Jones–Smirnov [32]). Suppose that∑
j

diam(S(Qj))
2 <∞,

where the sum is over all Whitney squares Qj in Ω. Then K is CH-removable.

Jones and Smirnov actually proved the stronger result that under the same
assumptions, the compact set K is removable for Sobolev continuous functions. It
is not known whether Sobolev removability and CH-removability are equivalent
notions.

See also [37] for a generalization of the above result.
An important consequence of Theorem 5.11 is that boundaries of sufficiently nice

simply connected domains are CH-removable.

Definition 5.12. We say that a simply connected domain Ω is a Hölder domain
if the Riemann conformal map is Hölder continuous on the closed unit disk.

Corollary 5.13 (Jones–Smirnov [32]). Boundaries of Hölder domains are CH-
removable.

This supersedes an earlier result of Jones [30] saying that boundaries of John
domains are CH-removable.

5.2. Nonremovable sets of zero area. Recall that by the first remark following
Proposition 4.4, compact sets of positive area are not CH-removable. The con-
verse is well-known to be false. In this subsection, we present some examples of
nonremovable sets of zero area.

As far as we know, the first such examples were given by Carleson [13] and
Gehring [24], who proved the following characterization of CH-removable product
sets.

Theorem 5.14 (Carleson [13], Gehring [24]). If F ⊂ R is compact, then E :=
F × [0, 1] is CH-removable if and only if F is countable.

By taking F to be any uncountable compact set of zero one-dimensional Lebesgue
measure, we obtain a nonremovable set E of zero area.

The proof of the direct implication in Theorem 5.14 involves the construction of
a homeomorphism of the sphere onto itself which is quasiconformal outside E of
the form

x+ iy 7→ x+ iy + g(y)µ((−∞, x)),

where µ is any continuous probability measure on F and g is some smooth function
supported on [0, 1]. If F is uncountable, it is possible to choose g such that h is
not quasiconformal everywhere. The other implication is a direct consequence of
Theorem 3.6 and Proposition 5.1.

In fact, if F is uncountable, then F × [0, 1] contains a closed graph which is not
CH-removable. This much stronger statement was proved by Kaufman [34]. See
also [67] for other examples of nonremovable product sets.

As for totally disconnected nonremovable sets of zero area, an example was given
by Rothberger [51] using elementary normal family arguments. More precisely, the
proof involves a simple and elegant geometric construction using a sequence of
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multiply connected slit domains converging to a Cantor set of zero area. A non-
Möbius homeomorphism of the sphere conformal outside the set is then obtained
as a suitable limit of slit mappings.

In the remaining of this subsection, we present a construction of nonremovable
Jordan curves of zero area due to Bishop [9]. First, we need a definition.

Definition 5.15. A Hausdorff measure function is an increasing continuous func-
tion h : [0,∞)→ [0,∞) with h(0) = 0. For such a function h, we denote by Λh(E)
the Hausdorff h-measure of a compact set E, so that the usual s-dimensional Haus-
dorff measure corresponds to h(t) = ts.

Theorem 5.16 (Bishop [9]). For any Hausdorff measure function h with h(t) =
o(t) as t→ 0, there exists a Jordan curve Γ such that

(i) Γ is not CH-removable;
(ii) Λh(Γ) = 0;

(iii) there exists a non-Möbius φ ∈ CH(Ω) with Λh(φ(Γ)) = 0, where Ω := C∞ \Γ.

We also mention that the curve Γ can be constructed so that it is “highly non-
removable”, in the sense that given any other curve Γ′ and any ε > 0, there is a
φ ∈ CH(Ω) such that φ(Γ) belongs to the ε-neighborhood of Γ′ with respect to
the Hausdorff metric. Furthermore, Bishop’s argument can be used to obtain an
analogue of Theorem 5.16 for totally disconnected sets.

Remark. Theorem 5.16 implies that one can construct nonremovable curves of any
Hausdorff dimension greater or equal to one. On the other hand, there are examples
of compact sets of Hausdorff dimension two which are S-removable, hence also CH-
removable (see [38, Chapter V, Section 3.7]). This shows that Corollary 5.2 and
Proposition 4.4 are best possible in terms of Hausdorff measures alone.

We now give a sketch of the proof of Theorem 5.16. All the details can be found
in [9].

First, we introduce the following notation. If A is any set, we denote by A(ε)
the (open) ε-neighborhood of A, i.e.

A(ε) := {z ∈ C : dist(z,A) < ε}.
The proof of Theorem 5.16 is based on the following lemma on the approximation
of conformal maps.

Lemma 5.17. Let Γ be an analytic Jordan curve with complementary components
Ω1,Ω2 and let ψ1, ψ2 be conformal maps on Ω1,Ω2 such that ψ1(Ω1) and ψ2(Ω2) are
the complementary components of some Jordan curve Γ′. Further, let α, δ, η > 0.

Then there exists an analytic Jordan curve γ ⊂ Γ(α) with complementary com-
ponents ω1, ω2 and conformal maps φ1, φ2 on ω1, ω2 such that

(i) φ1(γ) = φ2(γ) ⊂ Γ′(α);
(ii) |ψj(z)− φj(z)| < δ for z ∈ Ωj \ Γ(α), j = 1, 2;

(iii) jumpφ1(γ)(φ1, φ2) < η.

Here
jumpφ1(γ)(φ1, φ2) := sup

x∈γ
distφ1(γ)(φ1(x), φ2(x)),

where the distance is measured by arclength along φ1(γ) = φ2(γ).

Proof. See [9]. �
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Let us assume the above lemma and prove Theorem 5.16.

Proof. Let (εn) be a sequence of positive numbers decreasing to zero which we will
determine later. Start with an analytic curve Γ0 with complementary components

Ω0
1,Ω

0
2 and conformal maps ψ0

1 , ψ
0
2 on Ω0

1,Ω
0
2 mapping Ω0

1,Ω
0
2 onto the complemen-

tary components of some Jordan curve. By Lemma 5.17, there exists an analytic
Jordan curve Γ1 ⊂ Γ0(ε1) and conformal maps ψ1

1 , ψ
1
2 approximating ψ0

1 , ψ
0
2 such

that

ψ1
1(Γ1) = ψ1

2(Γ1) ⊂ ψ0
1(Γ0)(ε1)(= ψ0

2(Γ0)(ε1))

and

jump(ψ1
1 , ψ

1
2) <

1

2
.

At the n-th step, we replace Γn−1 by Γn and ψn−1
1 , ψn−1

2 by ψn1 , ψ
n
2 such that

Γn ⊂ Γn−1(εn),

ψn1 (Γn) = ψn2 (Γn) ⊂ ψn−1
1 (Γn−1)(εn)(= ψn−1

2 (Γn−1)(εn))

and

jump(ψn1 , ψ
n
2 ) < 2−n.

Then the limits Γ := limn→∞ Γn, ψj := limn→∞ ψnj for j = 1, 2 exist and ψ1 = ψ2

on Γ, thus these two maps define a continuous function on C∞ which is conformal
outside Γ. By a sufficiently small choice of each εn, we can make sure that Γ is
a Jordan curve and that ψ1, ψ2 are injective on Γ, and therefore define a home-
omorphism of the sphere onto itself which is conformal outside Γ. Moreover, we
can arrange for this homeomorphism not to be Möbius, since ψn1 , ψ

n
2 uniformly ap-

proximate ψ0
1 , ψ

0
2 sufficiently far away from Γ. Finally, for Λh(Γ) = Λh(φ(Γ)) = 0

to hold it suffices to choose εn so small that both Γn−1 and ψn−1
1 (Γn−1) can be

covered by N disks of radius εn, where N is such that Nh(εn) is less than 2−n.
This is possible since the curves are analytic and h(t) = o(t) as t→ 0.

�

5.3. Applications to the dynamics of complex quadratic polynomials. In
this subsection, we discuss some applications of CH-removability to the dynamics
of quadratic polynomials. We consider the family of polynomials

fc(z) := z2 + c,

where c ∈ C.
Let us first review some elementary notions of holomorphic dynamics.
For c ∈ C, the basin of infinity of fc is defined as the set of all points that escape

to infinity under iteration :

Dc(∞) := {z ∈ C∞ : fnc (z)→∞ as n→∞},
where fnc is the composition of fc with itself n times. It is a completely invariant
domain containing the point ∞. Its complement in the Riemann sphere is denoted
by Kc and is called the filled Julia set. The filled Julia set and the basin of infinity
have a common boundary Jc := ∂Kc = ∂Dc(∞) called the Julia set. The Julia set
is either connected or a Cantor set (totally disconnected perfect compact set), and
the latter case happens if and only if 0 ∈ Dc(∞). The Fatou set Fc is defined as
the complement of the Julia set :

Fc := C∞ \ Jc = Dc(∞) ∪ int(Kc).
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It is also the maximal set of normality of the sequence of iterates (fnc )n∈N.
The Mandelbrot set M is the set of all parameters c ∈ C such that the Julia set

Jc is connected. It is a connected compact set. A famous conjecture (the so-called
MLC-conjecture) asserts that M is locally connected.

Let z0 be a periodic point of fc of period p, meaning that p is the smallest integer
such that fpc (z0) = z0. We define the multiplier of z0 as

λ(z0) := (fpc )′(z0) =

p−1∏
n=0

f ′c(f
n
c (z0)).

The point z0 is called attracting if |λ(z0)| < 1.
We say that a quadratic polynomial fc is hyperbolic if it has an attracting periodic

point or if its Julia set is a Cantor set. This is equivalent to the dynamics being
expanding on the Julia set. The following result on hyperbolic Julia sets is well-
known.

Proposition 5.18. Let fc be a hyperbolic quadratic polynomial whose Julia set Jc
is connected. Then the Riemann map h : D → D∞ admits a Hölder continuous
extension to the closed unit disk D. In particular, Jc is locally connected.

Combining this with Jones and Smirnov’s result (Corollary 5.13), we obtain

Theorem 5.19. If fc is a hyperbolic quadratic polynomial whose Julia set Jc is
connected, then Jc is CH-removable.

Moreover, it is possible to show that totally disconnected Julia sets are bound-
aries of John domains [15], thus they must be CH-removable by Theorem 5.11 or
[30]. In fact, using Mcmullen’s sufficient condition [44, Theorem 2.16], it is not
difficult to prove that these Julia sets have absolute area zero, so they are actually
S-removable by Theorem 4.12. Combining this with Theorem 5.19, we obtain that
every homeomorphism of the sphere onto itself that is conformal outside the Julia
set of a hyperbolic quadratic polynomial is actually a Möbius transformation. Note
that this is false if we consider rational functions instead of polynomials. Indeed,
there are hyperbolic rational functions with nonremovable Julia sets; an example is
given by R(z) := z2 + λ/z3 for λ > 0 small. The Julia set of R is a nonremovable
Cantor set of circles of zero area. It is, however, dynamically removable. See [27,
Section 9.2] and [6, Section 11.8].

Other examples of CH-removable Julia sets include those of subhyperbolic or
Collet-Eckmann quadratic polynomials (see [30] and [26] for their definition), since
they are known to be boundaries of John domains [14] and of Hölder domains [26]
respectively. It was conjectured in [30] that all Julia sets of quadratic polynomials
are CH-removable. This is now well-known to be false, since there are Julia sets
of positive area [11]. We do not know any example though of a nonremovable
quadratic Julia set with zero area.

Lastly, we mention the work of Jeremy Kahn who proved in his Ph.D. thesis that
Julia sets of quadratic polynomials fc with c ∈M such that either

(i) both of the fixed points of fc are repelling and fc is not renormalizable
or

(ii) all of the periodic cycles of fc are repelling and fc is not infinitely renormal-
izable
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are CH-removable. Then one can deduce from this that the Mandelbrot set M is
locally connected at such c’s. This illustrates the importance of studying the CH-
removability of Julia sets of quadratic polynomials whose parameter belongs to the
boundary of the Mandelbrot set. We also remark that it is not known whether
the boundary of M itself is CH-removable. It is not even known if it has zero
area, although we now know thanks to a result of Shishikura [57] that its Hausdorff
dimension is two.

5.4. Applications to Conformal welding. In this subsection, we present an-
other application of CH-removability.

Let D be the open unit disk, let T := ∂D be the unit circle and set D∗ := C∞ \D.
Let Ω ⊂ C∞ be a Jordan domain and let f : D→ Ω and g : D∗ → Ω∗ be conformal
maps, where Ω∗ := C∞ \ Ω. By a well-known theorem of Carathéodory, the maps
f and g extend to homeomorphisms on D, so that h := f−1 ◦ g : T → T is an
orientation-preserving homeomorphism.

Definition 5.20. We say that h : T→ T is a conformal welding for Ω.

Note that h is uniquely defined up to post-composition and pre-composition
with automorphisms of D. Moreover, if T is any Möbius transformation, then Ω
and T (Ω) give rise to the same welding homeomorphism and thus the map

W : [Ω]→ [h]

is well-defined, where

[Ω] := {T (Ω) : T is a Möbius transformation}

and

[h] := {φ ◦ h ◦ ψ : φ, ψ ∈ Aut(D)}.

Conformal welding has several important applications. For instance, it is a
fundamental notion in the theory of Teichmüller spaces and Fuchsian groups. It was
also used by Courant in the 1930’s in his solution of the Plateau-Douglas problem
of minimal surfaces. More recently, it was observed by Sharon and Mumford [56]
that conformal welding is a useful tool in the field of computer vision and numerical
pattern recognition, especially for the problem of classifying and recognizing objects
from their observed silhouette. For more information on the various applications
of conformal welding, the interested reader may consult the survey article [28] by
Hamilton and the references therein.

It is well-known that the map W is not surjective. However, its image contains
the set of quasisymmetric homeomorphisms; this is usually referred to as the fun-
damental theorem of conformal welding and it was first proved by Pfluger [49] in
1960. Another proof was published shortly after by Lehto and Virtanen [39]. We
also refer the reader to [10] for an elementary geometric proof using Koebe’s circle
domain theorem as well as [53] for a functional analytic proof.

As for the injectivity of the map W, the following proposition shows that it is
closely related to removability properties.

Proposition 5.21. Let Ω, Ω̃ ⊂ C∞ be Jordan domains. Then W([Ω]) =W([Ω̃]) if

and only if there exists a map F ∈ CH(C∞ \ ∂Ω) such that F (Ω) = Ω̃.
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Proof. If W([Ω]) = W([Ω̃]), then there exist conformal maps f : D → Ω, g : D∗ →
Ω∗, f̃ : D→ Ω̃, g̃ : D∗ → Ω̃∗ such that

f−1 ◦ g = f̃−1 ◦ g̃
on T, i.e.

f̃ ◦ f−1 = g̃ ◦ g−1

on ∂Ω. It follows that the conformal map f̃ ◦ f−1 on Ω can be extended to a

homeomorphism F : C∞ → C∞ which is conformal outside ∂Ω. Clearly, F (Ω) = Ω̃.

Conversely, if there exists such an F , then F ◦ f : D → Ω̃ and F ◦ g : D∗ → Ω̃∗

are conformal whenever f : D→ Ω and g : D∗ → Ω∗ are conformal, so that

W([Ω̃]) = [(F ◦ f)−1 ◦ (F ◦ g)] = [f−1 ◦ g] =W([Ω]).

�

Corollary 5.22. If Ω is a Jordan domain such that ∂Ω is CH-removable, then for

any other Jordan domain Ω̃, we have W[Ω] =W[Ω̃] if and only if [Ω] = [Ω̃].

In other words, if ∂Ω is CH-removable, then the only other Jordan domains
that yield the same welding homeomorphism are the Möbius images of Ω. It was
observed by Maxime Fortier Bourque in his master’s thesis that many authors have
claimed that the converse is true, either without proof or by giving an incorrect
argument. See for instance [46, Lemma 2], [36, Corollary II.2], [29, Section 4]
[8, Corollary 1], [9, p.324–325], [28, Section 3], [10, Remark 2], [5, Section 2.3],
[40, Corollary 1.4]. If ∂Ω is not CH-removable, then there exists a non-Möbius
homeomorphism F : C∞ → C∞ which is conformal outside ∂Ω. As in Proposition
5.21, it follows that Ω and F (Ω) give rise to the same welding homeomorphism.
However, one cannot directly deduce that [F (Ω)] 6= [Ω] since there could exist a
Möbius transformation T such that F (Ω) = T (Ω), even though F itself is non-
Möbius.

However, if in addition the boundary of Ω is assumed to have positive area, then
the converse of Corollary 5.22 holds. Indeed, by the measurable Riemann mapping
theorem, there is an infinite-dimensional family of non-Möbius homeomorphisms
of the sphere conformal outside ∂Ω and one can use some dimension argument to
show that the images of Ω under these conformal homeomorphisms cannot always
be Möbius-equivalent to Ω. A similar argument was used by Sullivan in his proof
of the No Wandering Domain theorem.

Unfortunately, as we saw earlier, there are curves of zero area that are not CH-
removable. We do not know if the converse of Corollary 5.22 holds for such curves.

Question 5.23. Is the converse of Corollary 5.22 true in the zero-area case?
In other words, if Ω is a Jordan domain with zero area boundary such that the
only other Jordan domains giving rise to the same welding homeomorphism are the
Möbius images of Ω, then is ∂Ω necessarily CH-removable?

Finally, we end this subsection by mentioning that in some special cases, the
welding homeomorphism can be identified explicitly. For instance, the welding
homeomorphism of a proper polynomial lemniscate of degree n (i.e. a connected set
of the form Ω := {z : |P (z)| < 1} where P is a polynomial of degree n) is given
by the n-th root of a Blaschke product of degree n whose zeros are the images of
the zeros of P under a conformal map of Ω onto D. Conversely, any n-th root of a
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Blaschke product of degree n is the welding homeomorphism of a proper polynomial
lemniscate of the same degree. This was first proved by Ebenfelt, Khavinson and
Shapiro [20]. See also [69] for a more elementary proof and a generalization to
rational lemniscates.

There are also several efficient numerical methods that can be used to recover the
boundary curve ∂Ω from the welding homeomorphism, such as Marshall’s Geodesic
Zipper Algorithm [41] for example.

5.5. Open questions. We end this section by discussing some open questions
related to CH-removability.

Question 5.24. Is the union of two CH-removable compact sets also CH-removable?

Recall that the answer is yes if the two compact sets are assumed to be disjoint,
by Corollary 5.8. Furthermore, by Proposition 2.3, Proposition 3.2 and Proposition
4.10, the answer is positive if the class CH is replaced by H∞, A or S.

The main difficulty in Question 5.24 is showing that Proposition 5.6 remains true
without the assumption that U contains E in (i). For the classes H∞ and A, we
were able to prove the corresponding result using Vitushkin’s localization operator
and for the class S, using the fact that S-removable sets are totally disconnected.
Unfortunately, these two approaches seem to fail for CH-removable sets.

Question 5.25 (Bishop [9]). Let Γ be a Jordan curve. If Γ is not CH-removable,
does it contain a nonremovable closed proper subset?

Clearly, the answer is positive if Γ has positive area. A positive answer in the
general case would obviously follow from a positive answer to Question 5.24.

Question 5.26. Let E ⊂ C be a compact set which is not CH-removable. How
large is CH(Ω)? In particular, if f ∈ CH(Ω) is non-Möbius, does there exist
another non-Möbius homeomorphism in CH(Ω) which is not of the form T ◦ f
where T is Möbius?

As mentioned before Question 5.23, if E has positive area then CH(Ω) is very
large. An affirmative answer to Question 5.23 would follow if one could prove that
CH(Ω) is always large enough, even in the zero-area case.

Recall that if E is not removable for the class S, then there exists a conformal
map of Ω onto the complement of a set of positive area, in view of Theorem 4.12.

Question 5.27. If E ⊂ C is compact and not CH-removable, does there exist a
map f ∈ CH(Ω) such that f(E) has positive area?

If we could prove that the answer is yes, then this would give a positive answer
to Question 5.23.

Finally, we mention a question raised by Scott Sheffield on the removability of
the famous Schramm-Loewner Evolution with parameter κ (SLEκ) (see [54] and
[50] for the definition and main properties).

Question 5.28 (Sheffield [55]). Is SLEκ (almost surely) CH-removable, for κ ∈
[4, 8)?

It is known that if κ ∈ (0, 4), then SLEκ is the boundary of a Hölder domain
[50] and thus is CH-removable by Corollary 5.13. On the other hand, for κ ≥ 8,
the curve SLEκ is space-filling hence certainly not removable.
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An answer to Question 5.28 would be very interesting in view of applications to
random conformal welding. See [55, Question 8] for more information.
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