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Abstract. A circle domain Ω in the Riemann sphere is conformally rigid
if every conformal map of Ω onto another circle domain is the restriction of
a Möbius transformation. We show that two rigidity conjectures of He and
Schramm are in fact equivalent, at least for a large family of circle domains.
The proof follows from a result on the removability of countable unions of
certain conformally removable sets. We also introduce trans-quasiconformal
deformation of Schottky groups to prove that a circle domain is conformally
rigid if and only if it is quasiconformally rigid, thereby providing new evidence
for the aforementioned conjectures.

1. Introduction

Let Ω be a domain in the Riemann sphere Ĉ. We say that Ω is a circle domain

if every connected component of its boundary is either a circle or a point. Circle
domains appear naturally in the theory of conformal representation of planar do-
mains. Indeed, a classical theorem of Koebe [11] states that any finitely connected
domain is conformally equivalent to a circle domain, unique up to Möbius equiva-
lence. This can be viewed as a generalization of the celebrated Riemann mapping
theorem. Koebe’s original proof was based on a continuity method using Brouwer’s
invariance of domain theorem, see e.g. [6, Chapter V, Section 5]. He later suggested
several other proofs of the result, including one based on an iteration process whose
convergence was finally proved by Gaier [5].

Koebe had earlier conjectured in 1909 that the result holds without any as-
sumption on the connectivity of the domain. This is known as Koebe’s Kreis-
normierungsproblem.

Conjecture (Koebe [12]). Any domain in Ĉ is conformally equivalent to a circle

domain.

Despite some important partial progress, the conjecture remains open. The fol-
lowing result of He and Schramm is undoubtedly one of the major recent advances.

Theorem 1 (He–Schramm [7]). Any domain in Ĉ with at most countably many

boundary components is conformally equivalent to a circle domain, unique up to

Möbius equivalence.
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The proof is based on a transfinite induction argument and an analysis of fixed
point indices of mappings. Schramm later gave in [14] a simpler proof using his
notion of transboundary extremal length. We also mention that He and Schramm
further generalized Theorem 1 to domains whose boundary components are all
circles and points except those in a countable and closed subfamily [9].

The proof of Theorem 1 relies heavily on the Baire category theorem and there-
fore cannot extend to the case of uncountably many boundary components. In this
case, Koebe’s conjecture remains wide open, although there are various families
of domains with uncountably many boundary components that are known to be
conformally equivalent to circle domains, see e.g. [16] and [14].

A striking feature of He and Schramm’s work is that the uniqueness part of
Theorem 1 plays a fundamental role in the proof of existence. More precisely,
the latter relies on the fact that any conformal map between two circle domains
with at most countably many boundary components is the restriction of a Möbius
transformation. This motivates the following definition.

Definition. A circle domain Ω in Ĉ is said to be conformally rigid if every confor-
mal map of Ω onto another circle domain is the restriction of a Möbius transfor-
mation.

For example, any finitely connected circle domain is rigid, as proved by Koebe
himself. The proof uses reflections across the boundary circles and the fact that
the limit set thereby obtained has absolute area zero and thus is removable for
conformal maps on its complement. As for circle domains with countably many
boundary components, they were shown to be rigid by He and Schramm [7]. They
later proved rigidity of circle domains with σ-finite length boundaries [8], which is,
as far as we know, the most general rigidity result known.

On the other hand, it is well-known that circle domains with uncountably many
boundary components need not be rigid. The simplest examples are complements
of Cantor sets that are not conformally removable.

Definition. Let E ⊂ C be compact. We say that E is conformally removable

if every homeomorphism of Ĉ which is conformal outside E is actually conformal
everywhere, hence is a Möbius transformation.

It follows from the measurable Riemann mapping theorem (cf. Theorem 7) that
quasicircles are conformally removable whereas sets of positive area are not. More-
over, compact sets of σ-finite length are well-known to be conformally removable.
These results are best possible from the point of view of Hausdorff measure, since
there exist removable sets of Hausdorff dimension two and non-removable sets of
Hausdorff dimension one. We also mention that there has been much recent in-
terest in conformal removability, mainly because of its applications to holomorphic
dynamics and conformal welding. For more information, the reader may consult
the survey article [17].

The failure of rigidity for some circle domains appears to be one of the main
difficulties in the study of Koebe uniformization. It is believed that the precise
understanding of rigidity should provide substantial insight into Koebe’s conjecture.
Motivated by this, He and Schramm proposed the following characterization.

Conjecture 2 (Rigidity Conjecture [8]). Let Ω be a circle domain. Then the

following are equivalent :
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(A) Ω is conformally rigid;

(B) the boundary of Ω is conformally removable;

(C) any Cantor set contained in the boundary of Ω is conformally removable.

Note that if Ω is the complement of a Cantor set E, then Ω is a circle domain
and E is conformally removable whenever Ω is rigid.

The present paper is devoted to the study of Conjecture 2. Our first main result
is the following.

Theorem 3. Let Ω be a circle domain whose boundary is the union of countably

many circles, Cantor sets and singletons. Then (B) and (C) are equivalent.

Note that there can be at most countably many circles in the boundary of a circle
domain. The assumption that ∂Ω is the union of countably many circles, Cantor
sets and singletons holds whenever the set of point boundary components which
are accumulation points of circles is an Fσ set. In particular, this occurs if there
are only finitely many circles or, more generally, if all point boundary components
are isolated from the circles.

We also give an example showing that the condition fails for some circle domains.
We do not know whether (B) and (C) are equivalent in this case.

Theorem 3 is a direct consequence of the following result on unions of certain
removable sets, which is of independent interest.

Theorem 4. Let E be a compact plane set of the form

E =

∞⋃

j=1

Γj ∪
∞⋃

k=1

Ck ∪
∞⋃

l=1

{zl},

where each Γj is a quasicircle, each Ck is a Cantor set and each zl is a complex

number. Then E is conformally removable if and only if every Ck is conformally

removable.

Note that it is open in general whether the union of two removable sets is re-
movable. As far as we know, Theorem 4 is the first non-trivial result on unions of
removable sets.

Our second main result is related to the equivalence of (A) and (B). It is well-
known that in the definition of a conformally removable set, conformal maps can
be replaced by quasiconformal mappings; in other words, the notions of conformal
removability and quasiconformal removability actually coincide (cf. Proposition 9).
Therefore, if (A) is equivalent to (B), then conformal rigidity should in principle
be equivalent to quasiconformal rigidity. We show that it is indeed the case.

Theorem 5. A circle domain Ω is conformally rigid if and only if it is quasicon-

formally rigid.

The proof requires a new technique involving David maps, which we refer to
as trans-quasiconformal deformation of Schottky groups. It is quite reminiscent of
trans-quasiconformal surgery in holomorphic dynamics (see e.g. [3, Chapter 9]).

An immediate consequence of Theorem 5 is that rigid circle domains are invariant
under quasiconformal mappings of the sphere.

Corollary 6. Let Ω be a circle domain and let f be a quasiconformal mapping of

the sphere which maps Ω onto another circle domain f(Ω). If Ω is conformally

rigid, then f(Ω) is also conformally rigid.
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Since conformally removable sets are also quasiconformally invariant (cf. Corol-
lary 10), this provides more evidence in favor of Conjecture 2.

The paper is structured as follows. Section 2 contains some preliminaries on qua-
siconformal mappings and conformally removable sets. The main result of this sec-
tion is a conformal extension result which is needed for the proof of Theorem 4, de-
tailed in Section 3. In Section 4, we introduce David maps and trans-quasiconformal
deformation of Schottky groups. Section 5 contains the proof of Theorem 5. Finally,
we conclude the paper with Section 6 and the discussion of a possible approach to
the implication (B) ⇒ (A) in Conjecture 2.

2. Preliminaries and conformal extension

The first part of this section consists of a very brief introduction to quasiconfor-
mal mappings. For more information, we refer the reader to [13].

First, we start with the analytic definition of quasiconformal mappings.

Definition. Let K ≥ 1, let U, V be domains in Ĉ and let f : U → V be an
orientation-preserving homeomorphism. We say that f is K-quasiconformal if it
belongs to the Sobolev space W 1,2

loc (U) and satisfies the Beltrami equation

∂zf = µ∂zf

almost everywhere on U , for some measurable function µ : U → D with ‖µ‖∞ ≤
K−1
K+1 . In this case, the function µ is called the Beltrami coefficient of f and is
denoted by µf .

A mapping is conformal if and only if it is 1-quasiconformal. This is usually
referred to as Weyl’s lemma. Furthermore, inverses of K-quasiconformal mappings
are also K-quasiconformal, and the composition of a K1-quasiconformal mapping
and a K2-quasiconformal mapping is K1K2-quasiconformal. We will also need the
fact that quasiconformal mappings preserve sets of area zero, in the sense that if
E ⊂ U is measurable, then m(E) = 0 if and only if m(f(E)) = 0, where m is the
two-dimensional Lebesgue measure.

The following theorem is of central importance in the theory of quasiconformal
mappings.

Theorem 7 (Measurable Riemann mapping theorem). Let U be a domain in Ĉ

and let µ : U → D be a measurable function with ‖µ‖∞ < 1. Then there exists a

quasiconformal mapping f on U such that µ = µf , i.e.

∂zf = µ∂zf

almost everywhere on U . Moreover, the map f is unique up to post-composition

by a conformal map, in the sense that a quasiconformal mapping g on U satisfies

µg = µ = µf if and only if f ◦ g−1 : g(U) → f(U) is conformal.

The second part of this section deals with the properties of conformally removable
sets that are needed for the proof of Theorem 4. First, we introduce the following
definition.

Definition. Let E ⊂ C be compact. We say that E is quasiconformally remov-

able if every homeomorphism of Ĉ which is quasiconformal outside E is actually
quasiconformal everywhere.
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Standard quasiconformal extension results (see e.g. [13, Chapter II, Theorem
8.3]) imply that quasiconformal removability is a local property.

Proposition 8. Let E ⊂ C be compact. Then the following are equivalent :

(i) For any open set U with E ⊂ U , every homeomorphism f : U → f(U) which

is quasiconformal on U \ E is actually quasiconformal on the whole open set

U ;

(ii) E is quasiconformally removable.

A remarkable consequence of the measurable Riemann mapping theorem is that
the notions of quasiconformal removability and conformal removability actually
coincide.

Proposition 9. A compact set E ⊂ C is quasiconformally removable if and only

if it is conformally removable.

Proof. Assume that E is quasiconformally removable. First, we note that the area
of E must be zero. Indeed, this is a direct consequence of a result of Kaufman and
Wu [10] which states that if E has positive area, then there is a homeomorphism

of Ĉ which is conformal outside E and maps a subset of E of positive area onto a

set of zero area. Now, let f : Ĉ → Ĉ be a homeomorphism which is conformal on
the complement of E. Then in particular f is quasiconformal outside E, so it must
be quasiconformal on the whole sphere, by quasiconformal removability of E. But
then it follows from Weyl’s lemma that f is a Möbius transformation. Thus E is
conformally removable.

Conversely, assume that E is conformally removable and let g : Ĉ → Ĉ be any

homeomorphism which is quasiconformal on Ĉ \ E. By Theorem 7, there exists a

quasiconformal mapping f : Ĉ → Ĉ such that f ◦ g is conformal on Ĉ \ E. Since
E is conformally removable, the map f ◦ g is a Möbius transformation and thus
g = f−1 ◦ (f ◦ g) is actually quasiconformal on the whole sphere. It follows that E
is quasiconformally removable.

�

Note that as a corollary of Proposition 8 and Proposition 9, we obtain that
the union of two disjoint conformally removable sets is conformally removable.
Another important consequence is that the notion of conformal removability is
quasiconformally invariant.

Corollary 10. Let f be a quasiconformal mapping of the sphere with f(∞) = ∞.

If E is conformally removable, then f(E) is also conformally removable.

In particular, every quasicircle (image of the unit circle T under a quasiconformal
mapping of the sphere) is conformally removable.

We shall also need the following analogue of Proposition 8.

Proposition 11. Let E ⊂ C be compact. Then the following are equivalent :

(i) For any open set U with E ⊂ U , every homeomorphism f : U → f(U) which

is conformal on U \ E is actually conformal on the whole open set U ;

(ii) E is conformally removable.

Proof. The fact that (i) implies (ii) is trivial. For the converse, assume that E is
conformally removable, and let U be any open set with E ⊂ U and f : U → f(U)
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be any homeomorphism which is conformal on U \ E. By Proposition 9, the set E
is quasiconformally removable and therefore f is quasiconformal on the whole open
set U , by Proposition 8. Since E has zero area, the map f is actually conformal on
U , by Weyl’s lemma.

�

For the proof of Theorem 4, we need a version of Proposition 11 which holds
without the assumption that U contains E in (i). We do not know if this is true
in general (it would imply that the union of two conformally removable sets is
conformally removable even if the sets are not disjoint). However, it is true with
some additional hypothesis on the compact set E. This is the main result of this
section.

Theorem 12. Let E ⊂ C be compact, and assume that E is either a quasicircle or

a totally disconnected conformally removable set. Then for any open set U , every

homeomorphism f : U → f(U) which is conformal on U \ E is actually conformal

on the whole open set U .

For the proof, we need the following elementary lemma from point-set topology.

Lemma 13. Let S be a totally disconnected compact Hausdorff space. Suppose

that C1 and C2 are two disjoint closed subsets of S. Then there exist disjoint closed

subsets S1 and S2 of S such that S = S1 ∪ S2, C1 ⊂ S1 and C2 ⊂ S2.

Proof. The assumptions on S imply that it is zero-dimensional, i.e. it has a basis
consisting of clopen sets. It follows that for any x ∈ C1, there is a clopen set
Ox ⊂ S \ C2 with x ∈ Ox. Since C1 is compact, there exist x1, . . . , xn ∈ C1 such
that C1 ⊂ ∪n

j=1Oxj
:= S1. The result then follows by setting S2 := S \ S1. �

We can now prove Theorem 12.

Proof. Let U be open and let f : U → f(U) be a homeomorphism which is confor-
mal on U \E.

Assume first that E is a quasicircle. In this case, the result follows from a simple
application of Morera’s theorem and the measurable Riemann mapping theorem.

Write E = F (T), where F : Ĉ → Ĉ is quasiconformal. By the measurable Riemann

mapping theorem, there is a quasiconformal mapping g : Ĉ → Ĉ such that

µF−1◦f−1 = µg

on f(U \ E). Then g ◦ f ◦ F is a homeomorphism on F−1(U) which is conformal
on F−1(U) \ F−1(E). But F−1(E) = T, so that g ◦ f ◦ F is conformal everywhere
on F−1(U).

Indeed, let z0 be any point in F−1(U) and let r > 0 such that D(z0, r) ⊂ F−1(U).
Then g ◦ f ◦ F is continuous on D(z0, r) and holomorphic everywhere on that
disk except maybe on a circular arc. By Morera’s theorem, the map g ◦ f ◦ F
is holomorphic everywhere on D(z0, r).

This implies that f is quasiconformal on U . Since E is a quasicircle, its area
must be zero, so that by Weyl’s lemma, the map f is conformal everywhere on U .
This completes the proof in the case where E is a quasicircle.

Suppose now that E is totally disconnected and conformally removable. Fix
z0 ∈ U and let r > 0 such that D(z0, r) ⊂ U . Define

C1 := {z ∈ E : dist(z,C \ U) ≥ ǫ}
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and C2 := E \ U , where ǫ > 0 is smaller than the distance between D(z0, r) and
the complement of U . Then C1 and C2 are two disjoint closed subsets of E, so by
Lemma 13 there exist two disjoint closed subsets of E, say E1 and E2, such that
E = E1∪E2, C1 ⊂ E1 and C2 ⊂ E2. Then E1 is conformally removable. Moreover,
since f is conformal on (U \ E2) \ E1 and E1 is a compact subset of the open set
U \E2, it follows from Proposition 11 that f is conformal on U \E2, a set containing
the disk D(z0, r). As z0 ∈ U was arbitrary, we get that f is conformal everywhere
on U . �

3. Proof of Theorem 4

We now have the required preliminaries for the proof of Theorem 4.
Let E be a compact plane set of the form

E =

∞⋃

j=1

Γj ∪
∞⋃

k=1

Ck ∪
∞⋃

l=1

{zl},

where each Γj is a quasicircle, each Ck is a Cantor set and each zl is a complex
number. We want to show that E is conformally removable if and only if every Ck

is conformally removable.

Proof. If E is conformally removable, then clearly every Ck, as a compact subset
of E, is also conformally removable.

Conversely, assume that every Ck is conformally removable. Let f : Ĉ → Ĉ be a

homeomorphism which is conformal on D := Ĉ\E. Let D′ be the union of all open

subsets of Ĉ on which f is conformal, so that D ⊂ D′. Let us prove that D′ = Ĉ,

i.e. E′ := Ĉ \ D′ = ∅. Assume for a contradiction that E′ is not empty. Since
E′ is the countable union of the closed sets Γj ∩ E′, Ck ∩ E′ and {zl} ∩ E′, one
of these sets must have nonempty interior in E′, by the Baire category theorem.
Suppose that there is some j ∈ N such that Γj ∩ E′ has nonempty interior in E′.
The argument is the same if Ck ∩ E′ has nonempty interior in E′ for some k or if
{zl} ∩E′ has nonempty interior in E′ for some l. Then there is an open set U ⊂ C

such that U ∩E′ 6= ∅ and U ∩E′ ⊂ Γj ∩E′. Since f : Ĉ → Ĉ is a homeomorphism
which is conformal on U \ E′ = U \ (Γj ∩ E′) ⊃ U \ Γj and Γj is a quasicircle,
we obtain from Theorem 12 that f is conformal on U . Hence f is conformal on
D′ ∪ U , an open set properly containing D′, contradicting the maximality of the

latter. Therefore D′ = Ĉ and f is conformal on the whole Riemann sphere. This
shows that E is conformally removable.

�

Corollary. Let Ω be a circle domain whose boundary is the union of countably

many circles, Cantor sets and singletons. Then the boundary of Ω is conformally

removable if and only if any Cantor set contained in the boundary of Ω is confor-

mally removable. In other words, (B) and (C) in Conjecture 2 are equivalent.

Corollary 14. Let Ω be a circle domain and let P be the set of its point boundary

components. Suppose that the subset A of P consisting of accumulation points of

circles is an Fσ. Then (B) and (C) in Conjecture 2 are equivalent.
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Proof. If A is the countable union of the closed sets Fk, k ∈ N, then we can write
∂Ω as a countable union of closed sets

∂Ω =

∞⋃

j=1

γj ∪
∞⋃

k=1

Fk ∪
∞⋃

n=1

Pn,

where each γj is a circle and

Pn := {z ∈ P : dist(z, γj) ≥ 1/n for j = 1, 2, . . .} (n ∈ N).

By the Cantor–Bendixson theorem, each Fk and each Pn can be written as the
union of a Cantor set and a set which is at most countable. The result then follows
from the previous corollary.

�

We conclude this section with an example of a circle domain Ω whose boundary
is not the union of countably many circles, Cantor sets and singletons.

Example. It is not difficult to construct inductively a circle domain Ω such that
every z ∈ ∂Ω is an accumulation point of infinitely many circles. For example,
consider the following construction, due to Lasse Rempe-Gillen.

At each inductive step k, we construct a finite collection Fk of pairwise disjoint
circles, with Fk ⊂ Fk+1. Moreover, for each circle γ ∈ Fk, we pick an open annulus
Ak(γ) surrounding γ and contained in a 1/k-neighborhood of γ, which separates γ
from the other circles of Fk.

Start with F1 containing only one circle γ1, with some annulus A1(γ) surrounding
it. Then, inductively, for every circle γ ∈ Fk, add small circles to Fk+1, each within
the inner curve of Ak(γ), such that every point of γ is within a distance of 1/k from
one of these new circles. Then pick the annuli with the desired properties.

Let K be the closure of the union of all the circles in the Fk’s. Then it is easy
to see that every component of K is either a circle or a point (two distinct points
in K either belong to the same circle or are separated by some annulus). Letting

Ω be the unbounded component of Ĉ \K gives a circle domain with the required
properties.

Figure 1. The compact set K.
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Now, note that the boundary of such a circle domain Ω cannot be the union
of countably many circles, Cantor sets and singletons. Indeed, assume for a con-
tradiction that it is. Then one of these countably many circles, Cantor sets and
singletons, say F , would have non-empty interior in ∂Ω, by the Baire category the-
orem. It follows that there is an open set U with U ∩∂Ω 6= ∅ and U ∩∂Ω ⊂ F . But
then any point in U ∩ ∂Ω is not an accumulation point of infinitely many circles, a
contradiction.

4. Trans-quasiconformal deformation of Schottky groups

Let Ω be a circle domain and let {γj}∞j=1 be the collection of disjoint circles in
∂Ω. For notational convenience, we assume that there are infinitely many boundary
circles, although of course everything also works in the finite case. For j ∈ N, denote

by Rj : Ĉ → Ĉ the reflection across the circle γj :

Rj(z) = aj +
r2j

z − aj
,

where aj is the center and rj is the radius of the circle γj .

Definition. The Schottky group Γ(Ω) is the free discrete group of Möbius and
anti-Möbius transformations generated by the family of reflections {Rj}j∈N.

Thus Γ(Ω) consists of the identity map and all transformations of the form
Ri1 ◦ · · · ◦Rik where k ∈ N, i1, . . . , ik ∈ N and ij 6= ij+1 for j = 1, . . . , k − 1.

Classical quasiconformal deformation of Schottky groups deals with Beltrami
coefficients which are invariant under Γ(Ω). As far as we know, it was first intro-

duced by Sibner [15] to show that a domain in Ĉ is conformally equivalent to a
circle domain if and only if it is quasiconformally equivalent to a circle domain (cf.
Proposition 17). See also [9, Section 2]. Lastly, we mention that the method was
used recently by Bonk, Kleiner and Merenkov to study quasisymmetric rigidity of
Schottky sets, see [2, Section 7].

In this section, we introduce a generalization of classical quasiconformal deforma-
tion where Beltrami coefficients are replaced by so-called David coefficients. These
are measurable functions bounded by one that are allowed to tend to one in a
controlled way.

Definition. Let U ⊂ C be open. We say that a measurable function µ : U → D is
a David coefficient if there exist constants M > 0, α > 0 and 0 < ǫ0 < 1 such that

(1) m({z ∈ U : |µ(z)| > 1− ǫ}) < Me−
α
ǫ (ǫ < ǫ0),

where m is the two-dimensional Lebesgue measure.
Furthermore, an orientation-preserving homeomorphism f on U is called a David

map if f belongs to the Sobolev space W 1,1
loc (U) and satisfies the Beltrami equation

∂zf = µ∂zf

almost everywhere on U , for some measurable function µ : U → D satisfying (1).
In this case, the function µ is called the David coefficient of f and is denoted by
µf .

David coefficients and David maps were introduced by David [4] for the study
of the Beltrami equation in the degenerate case ‖µ‖∞ = 1. More recently, they
appeared to be quite useful in holomorphic dynamics, see e.g. [3, Chapter 9].
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It is well-known that David maps share some of the useful properties of quasicon-
formal mappings. For instance, they preserve sets of area zero in the sense that for
any measurable set E ⊂ U , we have m(E) = 0 if and only if m(f(E)) = 0. On the
other hand, inverses of David maps may not be David; this is quite problematic in
many situations. To circumvent this difficulty, one can replace (1) by the stronger
condition

(2) m({z ∈ U : |µ(z)| > 1− ǫ}) ≤ Me−βe
α
ǫ (ǫ > 0)

for some constants M,α, β > 0. We shall denote the corresponding measurable
functions µ : U → D by strongly David coefficients and the corresponding home-
omorphisms f on U by strongly David maps. Then inverses and compositions of
strongly David maps are strongly David, see [4, Section 11].

Lastly, we mention that (strongly) David coefficients and (strongly) David maps

can also be defined on open subsets U of the sphere Ĉ provided euclidean area is
replaced by spherical area in (1) and (2).

The following is a generalization of the measurable Riemann mapping theorem
(cf. Theorem 7) for David maps.

Theorem 15 (David integrability theorem [4]). Let U be a domain in Ĉ and let

µ : U → D be a David coefficient on U . Then there exists a David map f on U
such that µ = µf , i.e.

∂zf = µ∂zf

almost everywhere on U . Moreover, the map f is unique up to post-composition by

a conformal map, in the sense that a David map g on U satisfies µg = µ = µf if

and only if f ◦ g−1 : g(U) → f(U) is conformal.

A convenient way to think of Beltrami coefficients and, more generally, of strongly
David coefficients is in terms of almost complex structures and pullbacks, as in [3,
Section 1.2].

Definition. Let V ⊂ C be open and let µ : V → D be measurable. If f : U → V
is an orientation-preserving strongly David map, then one can define a measurable
function f∗(µ) : U → D, called the pullback of µ by f , by

f∗(µ) :=
∂zf + (µ ◦ f)∂zf

∂zf + (µ ◦ f)∂zf
.

Note that this is well-defined since strongly David maps are differentiable almost
everywhere and they preserve sets of area zero. Furthermore, we can also consider
orientation-reversing strongly David maps f : U → V . In this case, the strongly
David coefficient of f is defined by µf := µf and the pullback f∗(µ) by

f∗(µ) =
∂zf + (µ ◦ f)∂zf

∂zf + (µ ◦ f)∂zf
.

With these definitions, the coefficient µf is simply the pullback of µ0 ≡ 0 by f .
Moreover, pullbacks satisfy the natural property

(f ◦ g)∗(µ) = g∗(f∗(µ)).

We are now ready to discuss coefficients which are invariant under the action of
the Schottky group Γ(Ω).
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Definition. We say that a measurable function µ : Ĉ → D is invariant with respect

to Γ(Ω) if T ∗(µ) = µ almost everywhere on Ĉ for every T ∈ Γ(Ω). This is equivalent
to

µ = (µ ◦ T )
∂zT

∂zT
or

µ = (µ ◦ T )
∂zT

∂zT

depending on whether T is Möbius or anti-Möbius.

The whole idea of trans-quasiconformal deformation of Schottky groups is based
on the fact that any strongly David homeomorphism of the sphere with coefficient
invariant with respect to Γ(Ω) maps Ω onto another circle domain.

Proposition 16. Let f : Ĉ → Ĉ be a strongly David map whose strongly David

coefficient µf is invariant with respect to the Schottky group Γ(Ω). Then f(Ω) is a

circle domain whose corresponding Schottky group is fΓ(Ω)f−1.

Proof. To prove that f(Ω) is a circle domain, it suffices to show that f(γj) is a

circle, for each circle γj in ∂Ω. Recall that Rj : Ĉ → Ĉ denotes the reflection across
the circle γj . Also, note that since strongly David maps are closed under inversions
and compositions, we have that f ◦ Rj ◦ f−1 is an orientation-reversing strongly
David map. Moreover, if µ0 ≡ 0, then

(f ◦Rj ◦ f
−1)∗(µ0) = (f−1)∗(R∗

j (f
∗(µ0))) = (f−1)∗(f∗(µ0)) = µ0,

where we used the fact that µf = f∗(µ0) is invariant with respect to Γ(Ω). In
other words, the coefficient of the strongly David map f ◦ Rj ◦ f−1 is zero almost
everywhere, which implies that f ◦Rj ◦ f−1 is anti-Möbius, by the uniqueness part
of Theorem 15. Now, note that γj is the fixed point set of Rj , so that f(γj) is the
fixed point set of the anti-Möbius transformation f ◦Rj ◦ f−1. It follows that f(γj)
must be a circle and f ◦Rj ◦ f−1 is the reflection across this circle.

Finally, the fact that the Schotty group of f(Ω) is fΓ(Ω)f−1 follows directly
from the fact that it is generated by the family of reflections {f ◦Rj ◦ f−1}j∈N. �

Now, let Ω be a circle domain, let P be the set of its point boundary components
and set Ω′ := Ω ∪ P . Suppose that µ : Ω′ → D is a measurable function.

Definition. We define the invariant extension µ̃ of µ to Ĉ by

µ̃(w) =

{
(T−1)∗(µ)(w) if w ∈ T (Ω′) for some T ∈ Γ(Ω)
0 otherwise,

for w ∈ Ĉ.

Note that µ̃ = µ on Ω′ and that |µ̃(T (z))| = |µ(z)| for all z ∈ Ω′ and all T ∈ Γ(Ω).
In particular, we have ‖µ̃‖∞ = ‖µ‖∞. Moreover, by construction, the function µ̃ is
invariant with respect to Γ(Ω).

The following result of Sibner is a nice application of invariant extensions of
Beltrami coefficients.

Proposition 17 (Sibner [15]). Let D be a domain in Ĉ which is a quasiconformally

equivalent to a circle domain. Then D is conformally equivalent to a circle domain.
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Proof. Suppose that g : Ω → D is a quasiconformal mapping of a circle domain Ω
onto D. Define µ : Ω′ → D by

µ =

{
µg on Ω
0 on P ,

so that ‖µ‖∞ < 1. Then the invariant extension µ̃ of µ also satisfies ‖µ̃‖∞ < 1.
By the measurable Riemann mapping theorem, there is a quasiconformal mapping

f : Ĉ → Ĉ with µf = µ̃, and since µf = µ̃ = µg on Ω, we get that f ◦ g−1 is
conformal on D. Moreover, (f ◦ g−1)(D) = f(Ω) is a circle domain, by Proposition
16. �

5. Proof of Theorem 5

In this section, we show that a circle domain is conformally rigid if and only if
it is quasiconformally rigid. The precise definition of the latter is the following.

Definition. A circle domain Ω in Ĉ is said to be quasiconformally rigid if every
quasiconformal mapping of Ω onto another circle domain is the restriction of a
quasiconformal mapping of the whole sphere.

Before we proceed with the proof of Theorem 5, we need the following lemma.

Lemma 18. Let Ω be a circle domain in Ĉ. If Ω is quasiconformally rigid, then

∂Ω has zero area.

Proof. This is precisely where we need to use trans-quasiconformal deformation of
Schottky groups. First, assume that ∞ ∈ Ω, composing with a Möbius transforma-
tion if necessary. As before, denote by {γj}∞j=1 and P respectively the collection of

circles and the set of point components in ∂Ω, and set Ω′ = Ω∪P . Let Γ(Ω) be the
Schottky group of Ω, which we write as Γ(Ω) = {Tj}j≥0, where T0 is the identity.

Assume that the boundary of Ω has positive area, so that m(P ) > 0. Note that
the sets {Tj(Ω

′)}∞j=1 are pairwise disjoint and that their union is bounded, thus we
have

∞∑

j=1

m(Tj(Ω
′)) < ∞.

For n ∈ N, let M(n) ∈ N be such that

∞∑

j=M(n)+1

m(Tj(Ω
′)) < e−en .

We can assume that M : N → N is strictly increasing.
We now define a David coefficient as follows. For n ∈ N, let

h(n) =
e−en/2

√
M(n) + 1

.

Then h : N → (0,∞) is strictly decreasing and h(n) → 0 as n → ∞. Now, let p be
a Lebesgue density point of P , and define µ : Ω′ → D by

µ(z) =

{
1− 1

n+1 if z ∈ P and h(n+ 1) < |z − p| ≤ h(n), n ∈ N

0 otherwise.
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Then µ satisfies the strongly David condition (2) on Ω′. Indeed, for all n ∈ N, we
have

m({z ∈ Ω′ : |µ(z)| > 1− 1/n}) = m(P ∩ D(p, h(n)))

≤ πh(n)2

= π
e−en

M(n) + 1
≤ πe−en .

Now, consider the invariant extension µ̃ of µ. Let us check that µ̃ is strongly

David on Ĉ. First, since |µ̃(Tj(z))| = |µ(z)| for all z ∈ Ω′ and all j ≥ 0, we have,
for n ∈ N,

m({z ∈ Ĉ : |µ̃(z)| > 1− 1/n}) = m




∞⋃

j=0

Tj ({z ∈ Ω′ : |µ(z)| > 1− 1/n})




=

∞∑

j=0

m(Tj({z ∈ Ω′ : |µ(z)| > 1− 1/n})).

= S1 + S2,

where

S1 :=

M(n)∑

j=0

m(Tj({z ∈ Ω′ : |µ(z)| > 1− 1/n}))

and

S2 :=

∞∑

j=M(n)+1

m(Tj({z ∈ Ω′ : |µ(z)| > 1− 1/n})).

To estimate S1, note that each Tj is area-decreasing on Ω′, in the sense that
m(Tj(E)) ≤ m(E) whenever E ⊂ Ω′ is measurable. This follows from a simple
calculation involving the change of variable formula. Thus the first sum is less than

(M(n) + 1)m({z ∈ Ω′ : |µ(z)| > 1− 1/n}) ≤ (M(n) + 1)π
e−en

M(n) + 1
= πe−en .

On the other hand, the second sum S2 is less than
∞∑

j=M(n)+1

m(Tj(Ω
′)) < e−en ,

by definition of M(n). Combining these two estimates together, we get, for each
n ∈ N,

m({z ∈ Ĉ : |µ̃(z)| > 1− 1/n}) ≤ πe−en + e−en = (π + 1)e−en ,

from which it follows that µ̃ is a strongly David coefficient on Ĉ.

By Theorem 15, there is a strongly David map f : Ĉ → Ĉ with µf = µ̃ almost
everywhere. Since µ̃ = µ = 0 almost everywhere on Ω, we get that f is conformal
and, in particular, quasiconformal on Ω. Furthermore, since µf is invariant with
respect to the Schottky group Γ(Ω), it follows from Proposition 16 that f(Ω) is a
circle domain.
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Finally, the map f on Ω is clearly not the restriction of a quasiconformal mapping
of the whole sphere. Indeed, this easily follows from the fact that for any 0 ≤ k < 1,
we can find some integer n ∈ N such that 1− 1/(n+ 1) > k, but then

|µf | = |µ̃| = |µ| ≥ 1−
1

n+ 1
> k

almost everywhere on P ∩ D(p, h(n)), a set of positive area, since p is a Lebesgue
density point of P .

This shows that Ω is not quasiconformally rigid.
�

We also need the following lemma.

Lemma 19 (He–Schramm). Let Ω be a circle domain, let P be the set of its

point boundary components and let Ω′ = Ω ∪ P . Suppose that g : Ĉ → Ĉ is a

quasiconformal mapping which maps Ω onto a circle domain g(Ω). Let µ be the

Beltrami coefficient of g restricted to Ω′, and denote by µ̃ its invariant extension

to Ĉ. Suppose that h : Ĉ → Ĉ is a quasiconformal mapping with µh = µ̃ almost

everywhere. Then g = T ◦ h on Ω for some Möbius transformation T .

Proof. The proof follows from classical results of Sullivan on Kleinian groups, see
[9, Lemma 2.2].

�

We can now proceed with the proof of Theorem 5.

Proof. Let Ω be a circle domain. We want to show that Ω is conformally rigid if
and only if it is quasiconformally rigid.

Assume that Ω is conformally rigid, and let f : Ω → f(Ω) be quasiconformal,
where f(Ω) is a circle domain. Set µ := µf−1 on f(Ω) and consider the invariant
extension µ̃ of µ. By the measurable Riemann mapping theorem, there is a quasi-

conformal mapping g : Ĉ → Ĉ with µg = µ̃ almost everywhere on Ĉ. Then g ◦ f
is conformal on Ω and g(f(Ω)) is a circle domain, by Proposition 16. Since Ω is
conformally rigid, it follows that g ◦ f is the restriction of a Möbius transformation
and thus f = g−1 ◦ (g ◦ f) is the restriction of a quasiconformal mapping of the
whole sphere. This shows that Ω is quasiconformally rigid.

For the converse, assume that Ω is quasiconformally rigid, and let f : Ω → f(Ω)
be conformal, where f(Ω) is a circle domain. Then in particular f is quasiconformal
on Ω, hence is the restriction of a quasiconformal mapping g of the whole sphere, by
quasiconformal rigidity of Ω. Now, by Lemma 18, the boundary ∂Ω has zero area
and thus the Beltrami coefficient of g restricted to Ω′ is zero almost everywhere. It

follows that the map h : Ĉ → Ĉ of Lemma 19 is a Möbius transformation. Since
f = g = T ◦ h on Ω, we get that f is the restriction of a Möbius transformation.
This shows that Ω is conformally rigid.

�

As mentioned in the introduction, it follows that rigid circle domains are quasi-
conformally invariant.

Corollary. Let Ω be a circle domain and let f be a quasiconformal mapping of the

sphere which maps Ω onto another circle domain f(Ω). If Ω is conformally rigid,

then f(Ω) is also conformally rigid.
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6. Concluding remarks

We conclude the paper with a few remarks regarding the equivalence of (A) and
(B) in Conjecture 2.

Assume for simplicity that Ω is the complement in Ĉ of some Cantor set E ⊂ C.
Then Ω is a circle domain, and recall from the introduction that E is conformally
removable whenever Ω is conformally rigid; in other words, (A) implies (B). It is
not known whether the converse holds, even in this special case.

Suppose that E is a counterexample to the converse, so that E is conformally
removable but Ω is not conformally rigid. Then in particular E cannot be removable
for conformal maps on its complement, in the sense that there exists a non-Möbius
conformal map on Ω. Examples of Cantor sets which are conformally removable
but not removable for conformal maps on their complement were given by Ahlfors
and Beurling in their seminal paper [1]. More precisely, they proved that if E is
a Cantor subset of the unit circle T and if the inner logarithmic capacity of T \ E

is less than one, then E is not removable for conformal maps on Ω = Ĉ \ E (see
[1, Theorem 14]). Note that such compact sets E are conformally removable by
Morera’s theorem. On the other hand, they all have finite length and thus their
complements Ω must be conformally rigid, by [8].

In this respect, it would be very interesting for the study of rigidity of circle
domains to find examples of Cantor sets E which

(i) do not have σ-finite length;
(ii) are conformally removable;
(iii) are not removable for conformal maps on their complement

and are fundamentally different from the Cantor sets of Ahlfors and Beurling.
Finally, note that if E is as above, then there is a non-Möbius conformal map f

on Ω = Ĉ \ E, and f does not extend to a homeomorphism of Ĉ. It follows that f
must stretch some points of E to nondegenerate continuum. The question is then
whether it is possible for all of these continuum to be circles.
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