
RIGIDITY THEOREMS FOR CIRCLE DOMAINS

DIMITRIOS NTALAMPEKOS AND MALIK YOUNSI

Abstract. A circle domain Ω in the Riemann sphere is conformally rigid if
every conformal map from Ω onto another circle domain is the restriction of
a Möbius transformation. We show that circle domains satisfying a certain
quasihyperbolic condition, which was considered by Jones and Smirnov [13],
are conformally rigid. In particular, Hölder circle domains and John circle
domains are all conformally rigid. This provides new evidence for a conjecture
of He and Schramm relating rigidity and conformal removability.

1. Introduction

A domain Ω in the Riemann sphere Ĉ is called a circle domain if every connected
component of its boundary is either a geometric circle or a point. Such domains
are well-known to be of significant importance in complex analysis and related
areas, mainly because they are expected to represent every planar domain, up to
conformal equivalence. This is known as Koebe’s Kreisnormierungsproblem.

Conjecture 1.1 (Koebe [15]). Any domain in Ĉ is conformally equivalent to a
circle domain.

Koebe himself proved Conjecture 1.1 in the case of domains with finitely many
boundary components [14], using a dimension argument based on Brouwer’s inva-
riance-of-domain theorem. The following generalization is undoubtedly one of the
most important advances on Koebe’s conjecture.

Theorem 1.2 (He–Schramm [9]). Any domain in Ĉ with at most countably many
boundary components is conformally equivalent to a circle domain.

As for the uncountable case, Conjecture 1.1 remains wide open, despite some
partial results by Sibner [28], He and Schramm ([11], [27]), and Herron and Koskela
[12].

In Theorem 1.2, the circle domain is actually unique up to a Möbius transforma-
tion, which follows from the fact, also proved in [9], that every conformal map from
a circle domain with at most countably many boundary components onto another
circle domain is Möbius. This motivates the following definition.

Definition 1.3. A circle domain Ω in Ĉ is conformally rigid if every conformal map
from Ω onto another circle domain is the restriction of a Möbius transformation.
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The rigidity property in the countable case was in fact crucial in the proof of
Theorem 1.2. He and Schramm later extended rigidity to circle domains with
boundaries of σ-finite length [10], which is as far as we know the best rigidity result
in the literature.

As observed in [10], the notion of conformal rigidity appears to be closely related
to conformal removability.

Definition 1.4. A compact set E ⊂ Ĉ is conformally removable if every homeo-

morphism of Ĉ that is conformal outside E is actually conformal everywhere, and
hence is a Möbius transformation.

Examples of removable sets include sets of σ-finite length and quasicircles. On
the other hand, compact sets of positive area are never conformally removable.
The converse is false. In fact, there exist removable sets of Hausdorff dimension
two and non-removable sets of Hausdorff dimension one, and no geometric char-
acterization of removability is known. See [32, Section 5] for more information,
including applications to holomorphic dynamics and to conformal welding.

If E ⊂ C is a Cantor set, then Ω := Ĉ\E is a circle domain, and it follows directly
from the definitions that Ω is not conformally rigid if E is not removable. In par-
ticular, complements of positive-area Cantor sets are never conformally rigid. The
problem of determining exactly which circle domains are rigid remains open, and a
solution should provide substantial insight into Koebe’s conjecture. Motivated by
this, He and Schramm proposed the following characterization.

Conjecture 1.5 (Rigidity conjecture [10]). A circle domain Ω is conformally rigid
if and only if its boundary ∂Ω is conformally removable.

As previously mentioned, the direct implication holds if Ω has only point bound-
ary components. Furthermore, Conjecture 1.5 holds for circle domains with bound-
aries of σ-finite length, in view of the preceding remarks. It also holds if ∂Ω has
positive area, since in this case Ω cannot be conformally rigid, as can be seen using
quasiconformal deformation of Schottky groups. In [33], the second author ob-
tained further evidence in favor of the rigidity conjecture by proving that a circle
domain is conformally rigid if and only if it is quasiconformally rigid, meaning that
every quasiconformal mapping from the domain onto another circle domain is the
restriction of a quasiconformal mapping of the whole sphere. In particular, rigidity
of circle domains is quasiconformally invariant, which would also follow if Conjec-
ture 1.5 were true, by the quasiconformal invariance of removability (see e.g. [32,
Proposition 5.3]).

It is well-known, however, that from the point of view of removability and rigidity,
considerations of Hausdorff measure and dimension are not enough, and it is rather
the “shape” than the “size” of the set that matters. In this spirit, our main theorem
is the following rigidity result.

Theorem 1.6. Let Ω ⊂ Ĉ be a circle domain, and assume without loss of generality
that ∞ ∈ Ω. Let B(0, R) ⊂ C be a large open ball that contains all complementary
components of Ω. Suppose that for a point x0 ∈ B(0, R) ∩Ω we have

∫

B(0,R)∩Ω

k(x, x0)
2 dx < ∞,(1.1)

where k(·, ·) denotes the quasihyperbolic distance in the region B(0, R) ∩ Ω. Then
Ω is conformally rigid.
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We refer to (1.1) as the quasihyperbolic condition. This condition was consid-
ered by Jones and Smirnov in [13] for the study of conformal removability. More
precisely, they proved that domains satisfying (1.1) have conformally removable
boundaries. The combination of this fact with Theorem 1.6 shows that Conjecture
1.5 holds for circle domains satisfying the quasihyperbolic condition.

The quasihyperbolic condition is satisfied for sufficiently regular domains, such
as John domains and Hölder domains for instance (see [29] for the definitions). This
yields the following corollary.

Corollary 1.7. Hölder circle domains are all conformally rigid. In particular,
John circle domains are conformally rigid.

The proof of Theorem 1.6 is inspired by techniques of He and Schramm [10]
and can be briefly described as follows. Let Ω be a circle domain satisfying the
quasihyperbolic condition, and let f : Ω → Ω∗ be a conformal map of Ω onto another
circle domain Ω∗ with f(∞) = ∞ ∈ Ω∗. The first step is to show that f extends
to a homeomorphism of Ω onto Ω∗. In order to do this, one first needs to rule
out the possibility that f maps some point boundary component to a circle, or
vice versa. This is proved in [10] using a so-called generalized Grötzsch extremal
length argument. However, the argument relies in a crucial way on the fact that ∂Ω
intersects almost every line through the origin (and almost every circle centered at
the origin) in an at most countable set. This holds provided ∂Ω has σ-finite length,
as is assumed in [10], but may fail under the quasihyperbolic assumption only. We
circumvent this difficulty using so-called detours, which were formalized in [24],
as well as techniques inspired from [13]. Once f has been shown to extend to a
homeomorphism of Ω onto Ω∗, one can use reflections across the boundary circles
to extend f to a homeomorphism of the whole sphere that conjugates the Schottky
groups of Ω and Ω∗. The next step is to use a modulus argument, based on the
fact that f is absolutely continuous “up to the boundary” (see Proposition 2.15),

to show that f is quasiconformal on Ĉ with quasiconformal dilatation K less than
some uniform constant K0 = K0(Ω) depending only on Ω. Now, if f is not Möbius
and thus K > 1, then one can use the measurable Riemann mapping theorem

to construct another quasiconformal mapping of Ĉ that maps Ω conformally onto
another circle domain but has quasiconformal dilatation bigger than K0, which
is the maximal allowed dilatation for such a map. This contradiction shows that
K = 1 and therefore f must be a Möbius transformation.

Lastly, we mention that rigidity with respect to more general classes of maps (e.g.
quasisymmetric) was extensively studied by Bonk, Kleiner, Merenkov, Wildrick and
others ([4], [19], [20], [21]), in the case of Schottky sets. Although circle domains and
Schottky sets are quite different (the latters are not domains and do not have point
boundary components), some of our techniques may apply in this other setting.

The paper is structured as follows. Section 2 contains preliminaries on the quasi-
hyperbolic condition and detours of paths, and Section 3 contains topological re-
sults that will be needed for the proof of Theorem 1.6. In Section 4, we prove that
boundary circles map to boundary circles, and Section 5 contains the proof that
point boundary components are mapped to point boundary components. Then, in
Section 6, we prove the continuous extension of f to the boundary of Ω. Section 7
contains the proof of the quasiconformal extension to the whole sphere. In Section
8, we conclude the proof of Theorem 1.6. Finally, in Section 9 we discuss further
remarks on Conjecture 1.5.
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2. Preliminaries and the quasihyperbolic condition

In this section we shall prove some important properties of domains D ⊂ C

satisfying the quasihyperbolic condition of Theorem 1.6, i.e.,∫

D

k(x, x0)
2 dx < ∞(2.1)

for some point x0 ∈ D. We also include in Subsections 2.3 and 2.4 a few preliminar-
ies required for the proof of the main result. We first start with some definitions.

Let D ( C be a domain, i.e., a connected open set. For a point x ∈ D, define
δD(x) := dist(x, ∂D) (using the Euclidean distance). We define the quasihyperbolic
distance of two points x1, x2 ∈ D by

kD(x1, x2) = inf
γ

∫

γ

1

δD(x)
ds,

where the infimum is taken over all rectifiable paths γ ⊂ D that connect x1 and
x2; here the symbol γ denotes also the trace of the path γ. The subscript D will
be omitted if the domain is implicitly understood.

Remark 2.1. The quasihyperbolic distance is trivially invariant under Euclidean
isometries. Namely, if T : C → C is an isometry and D ( C is a domain with
x1, x2 ∈ D, then kT (D)(T (x1), T (x2)) = kD(x1, x2). Also, the quasihyperbolic
distance is scale invariant; in other words, if r > 0 and T (x) = rx, then the above
equality holds as well. Hence, the quasihyperbolic condition (2.1) is invariant under
translation and scaling.

Furthermore, if T : D → T (D) ( C is a bi-Lipschitz map, then

kT (D)(T (x1), T (x2)) ≃ kD(x1, x2)

and this shows that condition (2.1) is invariant under bi-Lipschitz maps. Here and
in what follows the notation A ≃ B means that there exists a constant C > 0 such
that C−1A ≤ B ≤ CA and A . B means that A ≤ CB.

A simple (i.e., injective) curve γ : [0, 1] → D is called a quasihyperbolic geodesic
if for any two points x1, x2 ∈ γ we have

k(x1, x2) =

∫

γ|[x1,x2]

1

δD(x)
ds,

where γ|[x1,x2] denotes the subpath of γ between x1 and x2. We allow the possibility
that γ is defined on a (half) open interval and does not have endpoints in D, or it
even accumulates at ∂D. A compactness argument shows that for any two points
x1, x2 ∈ D, there exists a quasihyperbolic geodesic that connects them, see e.g. [5,
Theorem 2.5.14].

For a domain D ( C we also consider the Whitney cube decomposition W(D),
which is a collection of closed dyadic cubes Q ⊂ D (or rather squares) with the
following properties:
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(1) the cubes of W(D) have disjoint interiors and
⋃

Q∈W(D)Q = D,

(2)
√
2 ℓ(Q) < dist(Q, ∂D) ≤ 4

√
2 ℓ(Q) for all Q ∈ W(D),

(3) if Q1 ∩Q2 6= ∅, then 1/4 ≤ ℓ(Q1)/ℓ(Q2) ≤ 4, for all Q1, Q2 ∈ W(D).

Here, ℓ(Q) denotes the sidelength of Q. See [30, Theorem 1, p. 167] for the
existence of the decomposition. Note that (2) implies that k(x1, x2) ≤ 1 for all
x1, x2 lying in the same cube Q, so that in particular Whitney cubes have uniformly
bounded quasihyperbolic diameter.

We fix a basepoint x0 ∈ D, and denote by k(x0, A) the quasihyperbolic distance
from x0 to a set A ⊂ D. For each j ∈ N we define

Dj := {Q ∈ W(D) : k(x0, Q) ≤ j},
and D0 := ∅. Note that Dj contains finitely many cubes for each j ∈ N, since all
cubes of Dj are contained in a compact subset of D; see also Remark 2.2 below.
Each Whitney cube Q is contained in Dj \ Dj−1 for some unique j ∈ N. In this
case, we define j(Q) := j. Also, we have D =

⋃∞
j=1

⋃
Q:j(Q)=j Q. Two important

observations are the following:

Remark 2.2. Let γ be a quasihyperbolic geodesic passing through x0. Then there
exists a uniform constant N ∈ N such that for each j ∈ N there exist at most N
Whitney cubes Q ∈ Dj \ Dj−1 intersecting γ. This follows from the observation
that if |x1 − x2| ≥ δD(x1)/2, then the number of Whitney cubes N(x1, x2) that
intersect a quasihyperbolic geodesic joining x1, x2 satisfies

k(x1, x2) ≃ N(x1, x2).

See e.g. [16, p. 205].

Remark 2.3. If γ is a quasihyperbolic geodesic intersecting Q, then its Euclidean
length inside Q is bounded, up to a multiplicative constant, by ℓ(Q). More precisely,
H1(Q ∩ γ) . ℓ(Q). Here H1(S) denotes the 1-dimensional Hausdorff measure of a
set S ⊂ C, defined by

H1(S) := lim
δ→0

H1
δ(S),

where

H1
δ(S) := inf





∞∑

j=1

diam(Uj) : S ⊂
⋃

j

Uj , diam(Uj) < δ



 .

2.1. Existence of geodesics. Here, we prove that for domains D satisfying the
quasihyperbolic condition (2.1) the quasihyperbolic geodesics land surjectively onto
the boundary ∂D.

Lemma 2.4. Suppose that there exists a point x0 ∈ D with∫

D

k(x, x0)
2 dx < ∞.

Let z ∈ ∂D and zn ∈ D be a sequence with zn → z. Also, consider quasihyperbolic
geodesics γn : [0, 1] → D from x0 to zn, parametrized by rescaled Euclidean arc-
length. Then there exists a subsequence of γn that converges uniformly to a geodesic
γ ⊂ D, landing at z.

Moreover, if zn ∈ ∂D is a sequence with zn → z ∈ ∂D, and γn are quasihyperbolic
geodesics from x0 to zn parametrized by rescaled Euclidean arc-length, then there
exists a subsequence of γn that converges uniformly to a geodesic γ from x0 to z.
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In other words, after reparametrizing, γ|[0,1) ⊂ D and γ(1) = z. This lemma
shows that each point z ∈ ∂D is the landing point of a quasihyperbolic geodesic.

Remark 2.5. The proof is very similar to the discussion in [13, pp. 273–274], where
under the same assumptions the authors construct curves that behave like quasihy-
perbolic geodesics and satisfy the conclusion of the lemma. Here, we actually prove
that the quasihyperbolic geodesics do in fact yield the conclusion, and that we do
not need to construct new curves.

Proof. The second part of the lemma can be proved exactly as the first part, so we
omit that proof.

Let zn ∈ D be a sequence with zn → z ∈ ∂D, and consider the quasihyperbolic
geodesics γn : [0, 1] → D, parametrized by rescaled Euclidean arc-length, such that
γn(0) = x0 and γn(1) = zn. We first claim that these geodesics have uniformly
bounded length. This will follow from the next lemma.

Lemma 2.6. Let γ be a quasihyperbolic geodesic passing through x0. Let j0 ∈ N,
and consider β to be a subpath of γ intersecting only Whitney cubes Q ∈ W(D)
with j(Q) ≥ j0. Then

length(β) . j
−1/2
0 .

In particular, D is bounded.

Proof. By Remark 2.3, we have

length(β) .
∑

Q:Q∩β 6=∅

ℓ(Q) =
∑

Q:Q∩β 6=∅

ℓ(Q)j(Q)j(Q)−1

≤


 ∑

Q∈W(D)

ℓ(Q)2j(Q)2




1/2
 ∑

Q:Q∩β 6=∅

j(Q)−2




1/2

.

The first term is comparable to ‖k(·, x0)‖L2(D). Indeed, since
⋃∞

j=1

⋃
Q:j(Q)=j Q =

D, we have
∫

D

k(x, x0)
2 dx =

∞∑

j=1

∑

Q:j(Q)=j

∫

Q

k(x, x0)
2 dx

≃
∞∑

j=1

∑

Q:j(Q)=j

ℓ(Q)2j(Q)2 =
∑

Q∈W(D)

ℓ(Q)2j(Q)2.

Here, we also used the fact that k(x, x0) ≃ j(Q) for all x ∈ Q with j(Q) > 1, since
the quasihyperbolic diameter of Q is at most 1. Moreover, in the case j(Q) = 1,
we also have

∫
Q
k(x, x0)

2 dx ≃ ℓ(Q)2j(Q)2.

Hence, we have

length(β) .




∑

Q:Q∩β 6=∅

j(Q)−2




1/2

and it suffices to control the latter term. Using Remark 2.2, we may write

∑

Q:Q∩β 6=∅

j(Q)−2 =
∑

j≥j0

∑

Q:Q∩β 6=∅
j(Q)=j

j−2 ≃
∞∑

j≥j0

j−2 ≃ j−1
0 .
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The conclusion follows. �

Now, we return to the proof of Lemma 2.4. The paths γn have uniformly bounded
lengths by Lemma 2.6 and they stay in the set D, which is compact again by
Lemma 2.6. Applying the Arzelà-Ascoli theorem, we may extract a subsequence,
still denoted by γn, that converges uniformly to a rectifiable path γ : [0, 1] → D
with γ(0) = x0 and γ(1) = z; see [5, Theorem 2.5.14] for a detailed argument. We
parametrize γ : [0, 1] → D by rescaled Euclidean arc-length, and we now have to
show that γ|[0,1) is a quasihyperbolic geodesic.

For this, it suffices to prove that γ|[0,1) is a path contained in D. It is a general
fact that if a sequence of geodesics ζn in a length space (X, d) converges uniformly
to a path ζ in X , then ζ is also a geodesic; see [5, Theorem 2.5.17]. In our case,
one needs to apply this principle to all compact subpaths ζ ⊂⊂ D of the path γ,
and suitable subpaths ζn of γn converging to ζ.

Now, we argue that γ|[0,1) ⊂ D. Suppose for a contradiction that there exists
some time t1 ∈ (0, 1) such that γ(t1) ∈ ∂D, and let t1 be the first such time.
Note that the curve γ cannot be constant on (t1, 1), since it is parametrized by
Euclidean arc-length. Hence, either there exists t2 ∈ (t1, 1) such that γ(t2) ∈ D,
or {γ(t) : t ∈ [t1, 1]} is a non-degenerate continuum, i.e., it contains more than
one point, contained in ∂D. The first scenario can be easily excluded, because the
quasihyperbolic geodesics connecting x0 to points in a small neighborhood of γ(t2)
must remain in a fixed compact subset of D. Thus, the limiting path γ|[0,t2] is also
contained in the same compact set, and it cannot meet ∂D, a contradiction.

In the second case, suppose that there exists a point y = γ(t3) ∈ ∂D, t3 ∈ (t1, 1),
with y 6= z. Let yn ∈ γn be points converging to y, and let βn be the subpath of
γn from yn to zn.

Then, for each j0 ∈ N, there exists n0 ∈ N such that for n ≥ n0 the path βn

intersects only cubes Q with j(Q) ≥ j0. Indeed, otherwise there exists a fixed cube
Q that is intersected by infinitely many paths βn. Suppose this is the case for all
n ∈ N, by passing to a subsequence. Then

k(x0, zn) ≤ k(x0, Q) + 1 + k(Q, zn) ≤ k(x0, Q) + 1 + k(yn, zn),

but this is strictly less than k(x0, zn) = k(x0, yn) + k(yn, zn) for large n, since
yn → y ∈ ∂D; recall that γn is a geodesic passing through x0, yn, and zn. This is
a contradiction.

We fix j0, n0 ∈ N, as above. Using Lemma 2.6 we conclude that

|yn − zn| ≤ length(βn) . j
−1/2
0

for n ≥ n0. Taking limits, it follows that y = z, a contradiction. �

Following [13], for each cube Q ∈ W(D) we define the shadow SH(Q) of Q to be
the set of points z ∈ ∂D such that there exists a quasihyperbolic geodesic starting
at x0, passing through Q and landing at z. We then define

s(Q) = diam(SH(Q)).

Lemma 2.7. For each Whitney cube Q ∈ W(D) the shadow SH(Q) is a compact
subset of ∂D.

Proof. Since ∂D is bounded by Lemma 2.6, it suffices to show that SH(Q) ⊂ ∂D
is closed. If zn is a sequence in SH(Q) converging to z ∈ ∂D, then a sequence of
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geodesics γn passing through Q and landing at zn has a subsequence converging to
a geodesic landing at z, by Lemma 2.4. This limiting geodesic necessarily passes
through Q as well, since Q is closed, so that z ∈ SH(Q). �

Lemma 2.8. We have
∑

Q∈W(D)

s(Q)2 .

∫

D

k(x, x0)
2 dx.

This was proved in [13, p. 275]. In the proof, the authors use the curves men-
tioned in Remark 2.5 instead of the quasihyperbolic geodesics, but the proof remains
the same, so we omit it.

2.2. Detours. In this subsection, our goal is to show that any path γ ⊂ C that
intersects ∂D can be modified near γ∩∂D to obtain a new path γ̃, called a “detour”
path, that intersects ∂D only at finitely many points and has certain properties.
Our standing assumption, unless otherwise stated, is that D satisfies the quasihy-
perbolic condition (2.1). We first need a technical lemma.

Two Whitney cubes Q1, Q2 ∈ W(D) with, say, ℓ(Q1) ≥ ℓ(Q2) are adjacent if a
side of Q2 is contained in a side of Q1. This allows the possibility that Q1 = Q2.

Lemma 2.9. For every ε > 0 and x ∈ ∂D there exists r > 0 such that for all points
y ∈ B(x, r) ∩ ∂D there exist adjacent Whitney cubes Qx, Qy with x ∈ SH(Qx),
y ∈ SH(Qy), and ℓ(Qx) ≤ ε, ℓ(Qy) ≤ ε. Let γx, γy be quasihyperbolic geodesics
from x0 to x, y, passing through Qx, Qy, respectively. Also, consider the subpaths
βx, βy of γx, γy that intersect Qx, Qy at only one point and land at x, y, respectively.
Then Qx and Qy can be chosen so that we also have βx, βy ⊂ B(x, ε) and βx, βy

intersect only Whitney cubes Q with ℓ(Q) ≤ ε.

Proof. We fix ε > 0, j0 ∈ N, and let Qi
x, i ∈ I, be the family of cubes such that

x ∈ SH(Qi
x) for i ∈ I and j(Qi

x) = j0. This is a finite family, contained in Dj0 ,
but it also depends on j0. Consider a quasihyperbolic geodesic γi

x from x0 to x
passing through Qi

x. By Lemma 2.6, we may choose a sufficiently large j0 so that
for each i ∈ I, whenever γi

x is a geodesic from x0 to x passing through Qi
x, and

βi
x is the subpath from Qi

x to x, we have length(βi
x) < ε/2 (each Whitney cube Q

intersected by βi
x must satisfy j(Q) ≥ j0). In particular, each point of βi

x ⊂ B(x, ε)
is very close to ∂D, and we may also have (by choosing an even larger j0) that β

i
x

intersects only Whitney cubes Q with ℓ(Q) ≤ ε. This also implies that ℓ(Qi
x) ≤ ε.

By choosing an even larger j0 we may achieve the same conclusions for all Whit-
ney cubes Qy adjacent to Qi

x, since they satisfy j(Qy) ≥ j0 − 1. Namely, if γy is
a quasihyperbolic geodesic from x0 to a point y ∈ ∂D passing through a cube Qy

adjacent to some Qi
x, i ∈ I, then for the subpath βy of γy from Qy to y we have

that length(βy) < ε/2, and βy intersects only Whitney cubes with ℓ(Q) ≤ ε.

To finish the proof, we claim that there exists r > 0 such that if y ∈ B(x, r)∩∂D,
then there exists i ∈ I and a Whitney cube Qy, adjacent to Qi

x, such that y ∈
SH(Qy). Assume that this fails. Then there exists a sequence ∂D ∋ yn → x
such that for all cubes Q adjacent to Qi

x, i ∈ I, we have yn /∈ SH(Q). Consider
a geodesic γn from x0 to yn. By Lemma 2.4, after passing to a subsequence, γn
converges uniformly to a geodesic γ from x0 to x. Hence γ intersects some cube
Qi

x, for some i ∈ I. By uniform convergence, for sufficiently large n we must have
that γn intersects a cube adjacent to Qi

x, a contradiction. �
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Lemma 2.10. Let γ : [0, 1] → C be a simple path connecting two points a, b ∈ C.
Then for each ε > 0 we can find a detour path γ̃ contained in the ε-neighborhood
of γ, connecting a and b, such that

(i) γ̃ ∩ ∂D is a finite set,
(ii) the complementary components of D intersected by γ̃ are also intersected by

γ, and
(iii) if Q ∈ W(D) is a Whitney cube satisfying Q ∩ γ̃ 6= ∅, then either

Q ∩ γ 6= ∅, or

SH(Q) ∩ γ 6= ∅ and ℓ(Q) ≤ ε.

Moreover, if a or b lie on complementary components of D and γ|(0,1) does not
intersect these components, then the detour γ̃ may be taken to have the same prop-
erty.

In other words, γ̃ stays arbitrarily close to γ, connects the same points, it does
not intersect any “new” complementary components of D and it does not intersect
any “new” Whitney cubes, with the exception of some “small” Whitney cubes
whose shadows intersect γ. Sets like ∂D that admit such “detours” (with similar
properties) were formalized and studied by the first author in [24]. The proof of
Lemma 2.10 relies crucially on Lemma 2.9.

Proof. If γ ∩ ∂D = ∅ then the statement is trivial, so we assume that γ ∩ ∂D 6= ∅.
We fix ε > 0 and for each x ∈ γ ∩ ∂D we consider a radius rx such that the

conclusion of Lemma 2.9 is true for points y ∈ B(x, rx) ∩ ∂D. Note that D is
bounded, by Lemma 2.6. Hence ∂D is compact. We cover γ ∩ ∂D by finitely many
balls Bi := B(xi, ri), i = 1, . . . , N , where ri = rxi

.
Suppose first that a, b /∈ ∂D. By choosing possibly smaller balls, we may assume

that a, b /∈ Bi for all i ∈ {1, . . . , N}. We consider the first entry point of γ into ∂D,
as one travels along γ from a to b. Assume that this point is y1 ∈ B1 ∩ ∂D, and let
z1 ∈ B1 ∩ ∂D be the last exit point of γ from B1 ∩ ∂D. By Lemma 2.9 we can find
paths γy1 , γz1 connecting y1, z1 to x1, respectively, such that both paths intersect
only small Whitney cubes of D, whose shadow intersects γ. Also the paths γy1 , γz1
are contained in B(x1, ε) so they are ε-close to γ, and they only intersect ∂D at
the points y1, x1, z1. We set γ̃ to be the subpath of γ from a to y1, concatenated
with γy1 and γz1 .

We now repeat the procedure with γ replaced with its subpath from z1 to b.
Note that either z1 ∈ B1, or z1 ∈ ∂B1. In the first case, we necessarily have that
there exists a point z′1 ∈ γ “immediately after” z1 with z′1 /∈ ∂D, so the same
argument can be repeated, as in the previous paragraph, with a replaced with z′1.
If z1 ∈ ∂B1 ∩ ∂D, then there exists a ball among B2, . . . , BN containing z1, since
the balls Bi, i ∈ {1, . . . , N} cover γ ∩ ∂D. We may assume that this ball is B2,
so z1 ∈ B2 ∩ ∂D = B(x2, r2) ∩ ∂D. We then set y2 = z1, and let z2 ∈ B2 ∩ ∂D
be the last exit point of γ from B2 ∩ ∂D. Then we concatenate γ̃ with the paths
γy2 and γz2 given by Lemma 2.9, which connect y2 and z2 to x2, respectively. One
continues in this way to obtain a path from a to b.

The cases a ∈ ∂D or b ∈ ∂D can be treated with a similar argument. Namely.
if a ∈ ∂D, then one can use the same argument with y1 replaced with a. The last
statement in the lemma is ensured by our construction, since the detours intersect
no more points of ∂D than γ does. �
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The next statement holds in general and is independent of the quasihyperbolic
condition (2.1).

Lemma 2.11. Let γ : [0, 1] → C be a simple path with endpoints a, b ∈ D, a 6= b,
such that γ|(0,1) does not intersect the complementary components of D that possibly
contain a or b in their boundary. Moreover, suppose that γ|(0,1) intersects finitely
many complementary components Bi, i ∈ I, of D. Then there exist finitely many
subpaths γ1, . . . , γm of γ with the following properties:

(i) γi is contained in D, except possibly for its endpoints, for each i ∈ {1, . . . ,m},
(ii) γi and γj intersect disjoint sets of Whitney cubes Q ∈ W(D) for i 6= j, with

the exception of the endpoints, which could lie on the same cube (see (A1)
below),

(iii) γ1 starts at a1 = a, γm terminates at bm = b, and in general the path γi starts
at ai and terminates at bi such that for each i ∈ {1, . . . ,m−1} we either have
(A1) bi, ai+1 ∈ ∂Qji for some Qji ∈ W(D), i.e., γi and γi+1 have an endpoint

on some Whitney cube ∂Qji , or
(A2) bi, ai+1 ∈ ∂Bji for some ji ∈ I, i.e., γi and γi+1 have an endpoint on

some set ∂Bji .
The cubes Qji from the first alternative are distinct and the complementary
components Bji from the second alternative are also distinct.

We remark that some of the subpaths γi of γ might be constant. This lemma
appears, in a slightly modified version, in [25] as Lemma 2.30, where the “peripheral
disks” in the statement there, for our purpose, are replaced with “complementary
components of D and Whitney cubes Q ∈ W(D)”. The proof is elementary and
uses an appropriate algorithm to cut the path γ into the desired subpaths.

If the second alternative (A2) occurs for each γi in Lemma 2.11, then we will
call the paths γi and the complementary components Bji a transboundary chain.
More precisely:

Definition 2.12. Let D ⊂ C be a domain. Let C := (γ1, B1, . . . , γm−1, Bm−1, γm),
m ≥ 1, be a collection of paths γi in D and complementary components Bi of D;
if m = 1 then C := (γ1). The collection C is called a transboundary chain of D if

(1) each path γi is contained in D, except possibly for its endpoints ai, bi, and
ai 6= bi,

(2) each Bi is a complementary component of D, and the components Bi are
all distinct, and

(3) for each i ∈ {1, . . . ,m− 1} we have bi, ai+1 ∈ ∂Bi.

The points a1,bm are called the endpoints of the transboundary chain C and they
might lie in D, but we also allow the possibility that a1 or bm belong to ∂B0 or ∂Bm,
where B0 or Bm are complementary components of D such that B0, B1, . . . , Bm−1

or B1, . . . , Bm are all distinct, respectively. In this case, we can add B0 or Bm

to the chain in the obvious way and obtain a transboundary chain of the form
(B0, γ1, . . . , γm) or (γ1, . . . , γm, Bm), respectively.

With this definition, if we combine the preceding two lemmas we have:

Corollary 2.13. Let γ : [0, 1] → C be a simple path with endpoints a, b ∈ D, a 6= b,
such that γ|(0,1) does not intersect the complementary components of D that possibly
contain a or b in their boundary. Then for each ε > 0 there exist paths γ1, . . . , γm
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and (if m ≥ 2) complementary components B1, . . . , Bm−1 of D with the following
properties:

(i) γ1 starts at a and γm terminates at b,
(ii) each Bi is intersected by γ|(0,1),
(iii) (γ1, B1, . . . , γm−1, Bm−1, γm) is a transboundary chain of D,
(iv) γi and γj intersect disjoint sets of Whitney cubes Q ∈ W(D) for i 6= j,
(v) if Q ∈ W(D) is a Whitney cube with Q ∩ γi 6= ∅, then either

Q ∩ γ 6= ∅, or

SH(Q) ∩ γ 6= ∅ and ℓ(Q) ≤ ε,

(vi) if Q ∈ W(D) is a Whitney cube with Q ∩ γi 6= ∅, then Q ∩ γi is contained in
the union of two line segments.

The important properties of the paths γi are that they intersect disjoint sets
of Whitney cubes, all of which are intersected by γ, with the exception of some
“small” cubes whose shadow intersects γ.

Remark 2.14. If a ∈ ∂D, then we may consider the component B0 of C \ D that
contains a and obtain a transboundary chain of the form (B0, γ1, . . . , γm) in the
above corollary. Similarly, if b ∈ Bm, we obtain a chain of the form (γ1, . . . , γm, Bm).
Note that B0 and Bm are necessarily distinct from B1, . . . , Bm−1 because γ|(0,1)
does not intersect B0 or Bm, by assumption.

Proof. We first apply Lemma 2.10 to obtain a detour path γ̃. Then we apply
Lemma 2.11 to γ̃ to obtain paths γ̃1, . . . , γ̃M . If the alternative (A1) in Lemma
2.11 occurs for two paths γ̃i, γ̃i+1, then we connect their endpoints that lie on the
boundary of a common Whitney cube with a line segment in that cube. In this
way we obtain a new family of paths. We repeat this procedure, until no two paths
have endpoints on the same cube. This gives us a collection of paths γ1, . . . , γm
that intersect disjoint sets of Whitney cubes, as required in (iv); it is important
here that the cubes in which we add the line segments are distinct, as provided by
Lemma 2.11(iii).

We note that (v) holds by Lemma 2.10(iii), since the paths γ̃i are subpaths
of γ̃, and we only perform concatenations inside cubes that are also intersected
by γ̃. Moreover, (i), (ii), and (iii) follow from Lemma 2.11(i) and (iii), since we
have eliminated the first alternative (A1). We remark that in order to have a
transboundary chain, it is required in the definition that if the endpoints a of γ1 or
b of γm lie in complementary components of D, then each of these components has
to be distinct from B1, . . . , Bm−1; this is guaranteed by our assumptions as noted
in Remark 2.14.

It remains to modify the paths γi so that they satisfy (vi). Since the paths γi
intersect disjoint sets of Whitney cubes, we can do the modifications individually
in each γi. Suppose that γi is a path both of whose endpoints ai, bi lie on comple-
mentary components of D, but otherwise γi is contained in D; since γi is part of a
transboundary chain, we must have ai 6= bi.

Moreover, suppose that γi : [0, 1] → C is parametrized so that it runs from ai to
bi; that is γi(0) = ai and γi(1) = bi. Let Q0 be any Whitney cube intersected by
γi. There exists a point γi(t0) = z0 ∈ ∂Q0 that is the last exit point of γi from
Q0, i.e., the path γi|(t0,1) does not intersect the cube Q0. Hence, there exists t > t0
arbitrarily close to t0 so that γi(t) intersects a cube Q1, adjacent to Q0. We let
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γ(t1) = z1, t1 > t0, be the last exit point of γi from Q1. Continuing in this way, we
obtain a chain of distinct adjacent cubes Q0, Q1, . . . such that Qn → bi as n → ∞.
In the same way we obtain a chain of distinct adjacent cubes Q0, Q−1, . . . such that
Qn → ai as n → −∞. We note that a cube Q ∈ W(D) might appear twice in the
sequence Qn, n ∈ Z, but this can only be the case for finitely many cubes, because
Qn → ai as n → −∞ and Qn → bi as n → ∞. We truncate the chain Qn to obtain

a new chain Q̃n, n ∈ Z, that has the above properties, but no cube appears twice.

Then we connect the centers of adjacent cubes Q̃n with line segments and this gives
us a path Γi connecting ai to bi. The path Γi is the desired path that satisfies (vi),
and also all the other required properties of the corollary, since it only intersects
Whitney cubes that are also intersected by the original path γi.

If i = 1, then γ1 starts at a1 = a, which might lie in the interior of D. One can
easily modify the above argument by connecting a to the center of the Whitney
cube that possibly contains it and obtain the path Γ1 as in (vi). The same holds
for γm, which might terminate in a point in D. �

2.3. Absolute continuity lemmas. This subsection contains some absolute con-
tinuity results that will be crucial for the proof of the main theorem.

Let D ⊂ C be an open set. A function f : D → C lies in the Sobolev space
W 1,2(D) if f ∈ L2(D) and f has weak derivatives of first order that lie in L2(D).
In particular, if f : D → f(D) ⊂ C is a conformal map with bounded domain and
range, then f ∈ W 1,2(D), since

∫

D

|f ′|2 = Area(f(D)) < ∞.

Proposition 2.15. Suppose that the domain D ⊂ C satisfies (2.1), and let f : D →
C be a continuous function in W 1,2(D) that extends continuously to D. Also, let
x ∈ C be arbitrary, and denote by γr(t) = x + reit, t ∈ [0, 2π], the circular path
around x at distance r. Then for a.e. r ∈ (0,∞) we have

H1(f(γr ∩ ∂D)) = 0.

This proposition is a variant of [24, Proposition 5.3], but the proof is almost
identical, and is based on the detours given by Lemma 2.10. In fact, the statement
and proof date back to the original work of Jones and Smirnov in [13, Proposition
1].

Corollary 2.16. Suppose that D ⊂ C satisfies (2.1). Then Area(∂D) = 0.

Proof. It suffices to apply Proposition 2.15 to the identity function and integrate
over all circles, using Fubini’s theorem. �

Lemma 2.17. Let Z ⊂ R be a closed set and f : Z → C be a continuous function.
Consider the linear extension of f in each bounded complementary open interval
of Z and extend f by a constant in the unbounded complementary intervals of Z,
if any. This yields a continuous extension f : R → C. Suppose that K ⊂ Z is a
closed set containing ∂Z. If f is locally absolutely continuous on each component of
Z \K = int(Z) \K and H1(f(K)) = 0, then f ′ = 0 a.e. on K and for all x, y ∈ R

with x ≤ y we have

|f(x)− f(y)| ≤
∫

[x,y]

|f ′|,
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where the latter integral might be infinite. In particular, if (xi, yi), i ∈ N, are the
bounded components of R \ Z, then

|f(x) − f(y)| ≤
∫

[x,y]∩(Z\K)

|f ′|+
∑

[x,y]∩(xi,yi) 6=∅

|f(xi)− f(yi)|,

for all x, y ∈ R.

Here, a C-valued function is absolutely continuous if its real and imaginary part
are. The proof of this lemma is elementary and can be derived from the Banach-
Zaretsky theorem [2, Theorem 4.6.2, p. 196]; see also [24, Lemma 6.4].

2.4. Distortion estimates. We end this section with distortion estimates onWhit-
ney cubes that will be used in subsequent sections. In the following, D,D∗ ( C are
domains and f : D → D∗ is a conformal map.

Lemma 2.18 (Koebe’s distortion theorem). Let z0 ∈ D, 0 < r ≤ dist(z0, ∂D),
and 0 < c < 1. Then we have

(2.2) |f ′(x)| ≃ |f(y)− f(z)|
|y − z|

for all x, y, z ∈ B(z0, cr) with constants depending only on c. In particular, f is
bi-Lipschitz in B(z0, cr).

See for instance [26, Chapter 1.3, pp. 8–9] or [18, Theorem 2.9].

Lemma 2.19. Let Q ∈ W(D) be a Whitney cube and let A ⊂ Q be a dyadic cube
of deeper level. Then we have

diam(f(Q)) ≃ dist(f(Q), ∂D∗)

and

−
∫

A

|f ′| ≃ −
∫

Q

|f ′|,

with constants independent of f,Q,A.

Proof. The second part follows directly from (2.2), fixing y ∈ A and noting that

|f ′(x)| ≃ |f ′(y)|
for all x ∈ Q. For the first part, let r := dist(Q, ∂D) and let z0 be the center of
Q. Note that by condition (2) of the Whitney decomposition, there is a uniform
constant 0 < c < 1 such that Q ⊂ B(z0, cr) ⊂ B(z0, r) ⊂ D and we have r ≃ ℓ(Q).
By the version of Koebe’s distortion theorem in [26, Corollary 1.4], we have

r|f ′(x)| ≃ dist(f(x), ∂f(B(x, r))) ≤ dist(f(x), ∂D∗)(2.3)

for x ∈ Q. In fact, the reverse inequality is also true, as one can see by applying
[26, Corollary 1.4] to f−1. Therefore, using (2.2), for y, z ∈ Q we have

dist(f(x), ∂D∗) ≃ r|f ′(x)| ≃ ℓ(Q)
|f(y)− f(z)|

|y − z| .

Since x, y, z ∈ Q are arbitrary, it follows that

dist(f(Q), ∂D∗) ≃ diam(f(Q)). �
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3. Topological preliminaries

In this section, we collect some general topological facts that will be needed later.
Most of these facts might be considered quite standard, but we give the proofs for
the sake of completeness. We first enumerate some well-known facts from planar
topology that will be used repeatedly.

(PT1) (Zoretti’s theorem, [31, Corollary 3.11, p. 35]) Let K be a component of
a compact set M in the plane, and let ε > 0. Then there exists a Jordan
curve γ that encloses K, does not intersect M , and is contained in the
ε-neighborhood of K.

(PT2) ([23, Chapter V, Theorem 10.2, p. 106]) If γ is a Jordan curve contained

in a domain U ⊂ Ĉ, then U \ γ has precisely two connected components,
whose boundaries are γ ∪ F1 and γ ∪ F2. Here F1 and F2 are the unions of
the components of ∂U in each of the two complementary components of γ.

(PT3) (Direct consequence of [23, Chapter V, Theorem 8.2, p. 101] and [23, Chap-
ter V, Theorem 14.2, p. 117]) If A is a totally disconnected closed subset of

a domain U ⊂ Ĉ, then U \ A is connected. We note that this also holds if
A is only assumed to be relatively closed in U .

Now, for the remainder of this section, the letters Ω and Ω∗ will denote domains

in Ĉ each containing the point ∞, and f : Ω → Ω∗ a homeomorphism with f(∞) =
∞.

3.1. Boundary correspondence. We first prove that f induces a correspondence
between the components of ∂Ω and the components of ∂Ω∗, in the following sense.

Proposition 3.1. For each component b of ∂Ω, define f∗(b) as the component b∗

of ∂Ω∗ such that {f(zn)}n∈N accumulates at b∗ whenever {zn}n∈N is a sequence
in Ω accumulating at b. Then f∗ is well-defined and maps the set of boundary
components of Ω bijectively onto the set of boundary components of Ω∗.

See also [9, Section 1].

Proof. First, note that if zn is a sequence in Ω accumulating at a boundary compo-
nent b, then f(zn) must accumulate on ∂Ω∗, since f : Ω → Ω∗ is a homeomorphism.
To prove that f∗ is well-defined, suppose for a contradiction that there are two
sequences zn and z′n in Ω accumulating at b, but f(zn) and f(z′n) accumulate at
two distinct boundary components of Ω∗, say b∗ and b′∗. By (PT1), we can find
a Jordan curve γ∗ in Ω∗ that separates b∗ from b′∗. Let γ = f−1(γ∗) ⊂ Ω. By
(PT2), each of Ω∗ \ γ∗ and Ω \ γ has precisely two components and since f is a
homeomorphism, it follows that each of the components of Ω \ γ is mapped bi-
jectively to a component of Ω∗ \ γ∗. Hence, zn and z′n eventually lie in different

components of Ω \ γ, which implies that b intersects both components of Ĉ \ γ,

contradicting the fact that b is a connected subset of ∂Ω ⊂ Ĉ \ γ. This proves that
f∗ is well-defined, and the same argument with f replaced with f−1 shows that if
b and b′ are two distinct boundary components of Ω, then f∗(b) 6= f∗(b′), i.e., f∗

is injective. Finally, if b∗ is a boundary component of Ω∗ and w is any point of
b∗, then there is a sequence zn in Ω with f(zn) → w. This sequence zn necessarily
accumulates at a boundary component b of Ω, and we get f∗(b) = b∗. This shows
that f∗ is surjective, completing the proof of the proposition. �
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We will denote by B the closed component of Ĉ \ Ω that is bounded by b, and
similarly B∗ is bounded by b∗. The map f∗ extends to the set of complementary
components of Ω, and if b is mapped to b∗, then B is mapped to B∗. With this
notation, the following lemma is a direct consequence of (PT2):

Lemma 3.2. Let γ be a Jordan curve in C, and suppose that γ ⊂ Ω. If U denotes
the bounded component of C\γ and U∗ denotes the bounded component of C\f(γ),
then f(U ∩ Ω) = U∗ ∩ Ω∗ and a complementary component B of Ω is contained in
U if and only if B∗ is contained in U∗.

We note that one can also define the boundary correspondence map h∗ for any

domains D,D′ ⊂ Ĉ and any homeomorphism h : D → D′. With this remark, we
have the following consequence of Proposition 3.1 and (PT3).

Lemma 3.3. Let U,U ′ be domains in Ĉ and let A,A′ be totally disconnected rela-
tively closed subsets of U,U ′, respectively. Let h be a homeomorphism of U \A onto
U ′ \A′ such that h∗(A) = A′. Then h has a unique extension to a homeomorphism
of U onto U ′.

We conclude this subsection with the following connectedness lemma.

Lemma 3.4. Let C be a transboundary chain of Ω, as in Definition 2.12. Then
the set

K :=
⋃

γi∈C

f(γi) ∪
⋃

Bi∈C

B∗
i

is a continuum and therefore

diam(K) ≤
∑

γi∈C

diam(f(γi)) +
∑

Bi∈C

diam(B∗
i ).

The paths γi : [0, 1] → C do not have endpoints necessarily in Ω, but γi|(0,1) ⊂ Ω.
In view of this, f(γi) is understood as f(γi|(0,1)).

Proof. We suppose that C = (γ1, B1, . . . , γm−1, Bm−1, γm). The argument is the
same if C is of the form (B0, γ1, . . . , γm) or (γ1, . . . , γm, Bm).

First, note that if zn is a sequence in γ1|(0,1) that converges to the endpoint b1
of γ1 that lies in ∂B1, then f(zn) must accumulate at B∗

1 , by the definition of f∗.

Hence f(γ1) ∩ B∗
1 6= ∅. Now, note that f(γ1) is a continuum, since f : Ω → Ω∗

is continuous. It follows that f(γ1) ∪ B∗
1 is the union of two continua with non-

empty intersection, and thus is a continuum as well. The same argument with γ1
replaced with γ2 shows that B∗

1 ∪f(γ2) is a continuum, and so is f(γ1)∪B∗
1 ∪f(γ2).

Repeating this argument, we get that K is a continuum, as required.
The last inequality in the statement of the lemma follows from the general fact

that if C is a connected metric space and C = A ∪B, then diam(C) ≤ diam(A) +
diam(B). �

3.2. Cluster sets. Equivalently, the map f∗ of Proposition 3.1 can be defined
using the notion of a cluster set. If E ⊂ ∂Ω is closed, then the cluster set of f at
E (with respect to Ω) is defined by

Clu(f ;E) :=
⋂

ε>0

f(Nε(E) ∩ Ω),
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where Nε(E) denotes the open ε-neighborhood of the set E. In particular, the
cluster set of f at a boundary point z0 ∈ ∂Ω is

Clu(f ; z0) =
⋂

ε>0

f(B(z0, ε) ∩Ω).

Note that Clu(f ;E) ⊂ ∂Ω∗, since f : Ω → Ω∗ is a homeomorphism. Moreover, the
cluster set Clu(f ;E) is the intersection of a decreasing sequence of compact sets,
and hence is compact as well. It is immediate to see that Clu(f ;E) is precisely
the set of accumulation points of {f(zn)}n∈N whenever {zn}n∈N is a sequence in Ω
converging to a point of E. In particular, if b is a boundary component of Ω, then
f∗(b) = Clu(f ; b).

We will also need the following proposition, which essentially asserts that f
“maps” boundary points to boundary continua.

Proposition 3.5. Suppose that each boundary component of Ω is a Jordan curve
or a single point and that for each ε > 0 there are at most finitely many Jordan
curves in ∂Ω with diameter greater than ε. Then for every z0 ∈ ∂Ω, the cluster set
Clu(f ; z0) is a continuum (possibly degenerate).

Proof. First note that if {z0} is a boundary component of Ω, then Clu(f ; z0) =
f∗({z0}), which is a component of ∂Ω∗ by the definition of f∗, so it is a continuum.
We can therefore assume that the boundary component of Ω containing z0 is a
Jordan curve. Now, suppose that this curve is the unit circle, and that all the other
boundary components of Ω are single points. Then, in this case, for each ε > 0, the
set B(z0, ε) ∩ Ω is connected by (PT3). It follows that the cluster set

Clu(f ; z0) =
⋂

ε>0

f(B(z0, ε) ∩ Ω)

is a decreasing intersection of continua, and thus has to be a continuum as well.
This proves the result in this special case.

For the general case, let b be the Jordan curve in ∂Ω containing z0. Using the
Schoenflies theorem [26, Corollary 2.9, p. 25], we may map b to the unit circle with

a global homeomorphism of Ĉ that fixes ∞. We can therefore assume without loss
of generality that z0 lies in the unit circle b ⊂ ∂Ω. Now, if ∂Ω contains only finitely
many Jordan curves, then they have positive distance from b, so the argument in
the previous paragraph can be used to obtain the conclusion that Clu(f ; z0) is a
continuum. We thus assume that there are infinitely (and thus countably) many
Jordan curves in ∂Ω, different from b, each bounding a closed Jordan region Bi,
i ∈ N. Now, we are going to use Moore’s decomposition theorem [22] with the
following formulation found in [7, Corollary 6A, p. 56]:

Theorem 3.6. Let {Bi}i∈N be a sequence of closed Jordan regions in Ĉ with di-
ameters converging to 0, and let U be an open set containing

⋃
i∈N

Bi. Then there

exists a continuous surjective map h : Ĉ → Ĉ, which is the identity outside U , such

that h induces a decomposition of Ĉ into the sets {Bi}i∈N and points. Specifically,
there exist countably many points pi ∈ U , i ∈ N, such that h−1(pi) = Bi for each

i ∈ N, and the map h : Ĉ \⋃i∈N
Bi → Ĉ \ {pi : i ∈ N} is bijective.

Note that our assumption on ∂Ω implies that diam(Bi) → 0 as i → ∞. Moore’s
theorem then provides us with a map h that is the identity in the closed unit disk
and maps each Bi to a point pi. We may assume that h(∞) = ∞. Moreover, h
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is a homeomorphism when restricted to Ω (by the invariance-of-domain theorem)
and maps the unit circle b identically to itself. The boundary components of h(Ω)
are precisely the images under h of the boundary components of Ω by Proposition
3.1. Hence, all boundary components of h(Ω) other than b are single points. Now,
Proposition 3.5 will follow from the first part of the proof and the next lemma.

Lemma 3.7. We have

Clu(f, z0) = Clu(f ◦ h−1, z0),

where the cluster set on the left is with respect to Ω and the cluster set on the right
with respect to h(Ω).

Proof. Let w ∈ Clu(f, z0). Then there is a sequence zn in Ω with zn → z0 and

f(zn) → w. By the continuity of h on Ĉ, we get that h(zn) is a sequence in h(Ω) with
h(zn) → h(z0) = z0, and f ◦ h−1(h(zn)) → w. It follows that w ∈ Clu(f ◦ h−1, z0),
which proves the direct inclusion.

For the reverse inclusion, let w ∈ Clu(f ◦h−1, z0). Then there is a sequence zn in
Ω with h(zn) → z0 and f ◦h−1(h(zn)) → w, i.e., f(zn) → w. If zn does not converge
to z0, then there is a subsequence znj

that converges to some z′0 with z′0 6= z0. Note

that by Proposition 3.1 applied to h−1, the point z′0 necessarily belongs to the
unit circle b. But h(znj

) → h(z′0), again by continuity, from which it follows that
h(z′0) = z0. Since h is the identity on b, this gives z′0 = z0, a contradiction. Thus,
zn → z0, and we get that w ∈ Clu(f, z0), as required. This completes the proof of
the lemma. �

Note that the cluster set Clu(f ◦ h−1, z0) is connected, by the first part of the
proof applied to the homeomorphism f ◦h−1 on h(Ω). Proposition 3.5 then follows
directly from Lemma 3.7. �

Remark 3.8. The conclusion of Proposition 3.5 is not necessarily true if the bound-
ary components of Ω are not assumed to be Jordan curves or points. To see this,
consider a conformal map from the complement of a figure eight to the complement
of a disk.

If the diameters of the complementary components of Ω and Ω∗ converge to 0,
then the map f∗ is continuous in a sense:

Lemma 3.9. Suppose that for each ε > 0 there are at most finitely many com-
plementary components of Ω and Ω∗ with diameter greater than ε. Let B be a

component of Ĉ \ Ω and z0 ∈ ∂B. If zn ∈ Ĉ \ B is a sequence converging to z0,
then there exists a subsequence of zn, still denoted by zn, such that either

(i) zn ∈ Ω for all n ∈ N and f(zn) converges to a point of Clu(f, z0), or

(ii) zn ∈ Bn, where Bn is a component of Ĉ\Ω for each n ∈ N, and B∗
n = f∗(Bn)

converges to a point of Clu(f, z0) in the Hausdorff sense.

In particular, if Bn ⊂ Ĉ \ Ω converges to z0, then B∗
n is contained in arbitrarily

small neighborhoods of Clu(f, z0) ⊂ ∂B∗ as n → ∞.

Proof. If there are infinitely many n ∈ N with zn ∈ Ω, we may assume that this is
the case for all n ∈ N and then the first alternative occurs by the definition of the
cluster set. If there are infinitely many n ∈ N with zn /∈ Ω, then after passing to
a subsequence we may find a sequence Bn of distinct complementary components
of Ω such that zn ∈ Bn for all n ∈ N. Since diam(Bn) → 0, we can find points
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z′n ∈ Ω with |zn − z′n| → 0, and thus z′n → z0. Moreover, if z′n is sufficiently
close to Bn, then we may also have that dist(f(z′n), B

∗
n) → 0 by Proposition 3.1.

Since dist(f(z′n),Clu(f, z0)) → 0, we obtain dist(B∗
n,Clu(f, z0)) → 0. Since the

diameters of B∗
n converge to 0, it follows that B∗

n converges to a point of Clu(f, z0),
after passing to a further subsequence. �

The following technical lemma asserts that if a cluster set Clu(f, z0) is “big”
then all “crosscuts” shrinking to z0 are mapped to sets having “big” diameter.
This lemma will be crucially used in Section 5 in order to prove that a conformal
map from a circle domain satisfying the quasihyperbolic condition onto another
circle domain cannot blow up a boundary point to a boundary circle.

Lemma 3.10. Suppose that each boundary component of Ω and Ω∗ is a Jordan
curve or a single point and that for each ε > 0 there are at most finitely many
Jordan curves in ∂Ω and ∂Ω∗ with diameter greater than ε.

Let B be a complementary component of Ω and consider points z0 ∈ ∂B and
w0 ∈ Clu(f, z0) ⊂ B∗. Suppose that γ ⊂ C \ {z0} is a closed curve winding once
around z0.

Then for each η > 0 there exists δ > 0 such that if γ ⊂ B(z0, δ), then there exists
a point z ∈ γ ∩Ω with |f(z)− w0| < η.

In particular, for each η > 0 there exists δ > 0 such that if γ ⊂ B(z0, δ), then
there exist points z1, z2 ∈ γ ∩ Ω with

|f(z1)− f(z2)| ≥ diam(Clu(f, z0))− η.

Proof. Suppose first that ∂Ω has finitely many components. By Proposition 3.1,
∂Ω∗ also has finitely many components. Note that B is either a single point {z0}
or it is a closed Jordan region. In the latter case, using the Schoenflies theorem we
may assume that B is the closed unit disk D. Again, using the Schoenflies theorem,
if necessary, we assume that B∗ = {w0} or B∗ = D. Suppose that δ is so small that
B(z0, δ) does not intersect any complementary components of Ω, except for B.

Since w0 ∈ Clu(f, z0), there exists a sequence zn ∈ Ω with zn → z0 such that
wn := f(zn) → w0. Note that for sufficiently large n the points wn and wn+1

lie in an annulus of the form 1 < |w| < R if B∗ = D or 0 < |w − w0| < R
if B∗ = {w0}, contained in Ω∗; recall that Ω∗ has finitely many complementary
components. Therefore, wn and wn+1 can be connected with a path that lies in Ω∗

and has length at most 2|wn −wn+1|. By connecting wn to wn+1 with paths in Ω∗

we may obtain a path Γ∗ : [0, 1) → Ω∗ such that Γ∗(0) = w1, limt→1 Γ
∗(t) = w0,

and Γ∗(tn) = wn, where tn ∈ [0, 1) is a sequence converging to 1. Observe that
the set Γ := f−1(Γ∗) ⊂ Ω intersects arbitrarily small neighborhoods of z0, since it
contains zn for all n ∈ N.

We let η > 0 be arbitrary, and fix a large N ∈ N such that Γ∗|[tN ,1) ⊂ B(w0, η).

Let δ > 0 be so small that f−1(Γ∗|[0,tN ]) ∩B(z0, δ) = ∅. We now consider a closed
curve γ ⊂ B(z0, δ) \ {z0} winding once around z0; this implies that there exists a

component U of Ĉ\γ containing z0 but not ∞. Since Γ is connected and intersects

the sets U and Ĉ \ U , we must have Γ ∩ γ 6= ∅. In fact, there exists t > tN such
that z := f−1(Γ∗(t)) ∈ γ. It follows that f(z) = Γ∗(t) ∈ B(w0, η), as desired.

For the general case, we suppose again that each of B,B∗ is either a single point
or the unit disk by using the Schoenflies theorem. Then we use Moore’s theorem
3.6 as in the proof of Proposition 3.5 and obtain a continuous map h of the sphere
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fixing ∞ such that h is the identity in B and in a neighborhood of ∞, it is a homeo-
morphism from Ω onto the domain h(Ω) and maps each complementary component
of Ω different from B to a point. Note that the boundary components of Ω and
h(Ω) are in correspondence by Proposition 3.1 and therefore the complementary
components of h(Ω) are single points, except possibly for B. We similarly obtain

a continuous map g from Ĉ onto itself that is a homeomorphism of Ω∗ onto g(Ω∗),
fixing B∗ and ∞ and mapping each complementary component of Ω∗ that is differ-

ent from B∗ to a point. Then the composition f̃ = g ◦ f ◦ h−1 is a homeomorphism
from h(Ω) onto g(Ω∗). The complementary components of h(Ω), g(Ω∗) that are dif-

ferent from B,B∗ form a totally disconnected set that is rel. closed in Ĉ\B, Ĉ\B∗,

respectively. By Lemma 3.3 we conclude that f̃ extends to a homeomorphism of

Ĉ \B onto Ĉ \B∗. The continuity of h and g implies that w0 ∈ Clu(f̃ , z0).
We fix η > 0 and let γ ⊂ B(z0, δ) be a closed curve as in the statement, winding

once around z0, where δ > 0 is to be determined. The following lemma implies that
h(γ) ⊂ C \ {z0} is a closed curve that winds once around z0.

Lemma 3.11. Suppose that h : Ĉ → Ĉ is a continuous map such that h−1(z0) =
{z0} and h−1(∞) = {∞} (in particular, the map h fixes the points z0 and ∞).
Moreover, suppose that h is equal to the identity in a neighborhood of ∞. If a

closed curve γ ⊂ Ĉ \ {z0,∞} winds once around z0, then h(γ) also winds once
around z0.

Now we use the first case of the proof, applied to the homeomorphism f̃ : Ĉ\B →
Ĉ\B∗. It follows that for each η′ > 0 there exists δ′ > 0 such that if h(γ) ⊂ B(z0, δ

′),

then there exists a point z′ ∈ h(γ) \B such that |f̃(z′)−w0| < η′. Note that if δ is
sufficiently small, then by the continuity of h we have h(γ) ⊂ B(z0, δ

′). We remark

that z′ does not lie necessarily in h(Ω). However, by the continuity of f̃ , we may

find a point h(z) ∈ h(γ)∩h(Ω) near z′ such that |g(f(z))−w0| = |f̃(h(z))−w0| < η′.
It remains to show that for each given η > 0 we can choose a small η′ > 0 so that
the above inequality implies that |f(z)− w0| < η.

For the latter, it suffices to have that for each η > 0 one can choose η′ > 0
such that if |w − w0| < η′ for w ∈ g(Ω∗) then |g−1(w) − w0| < η. This follows
immediately from Lemma 3.7, where instead of f and h one uses the identity id
and g. �

Proof of Lemma 3.11. We argue using homotopy. Namely, there exists a homotopy

γt ⊂ Ĉ \ {z0,∞} such that γ0 = γ and γ1 is contained in a neighborhood of ∞,
where h is the identity. The winding number is invariant under homotopy (see [6,
Theorem 4.12, p. 90]), hence γ1 still winds once around z0. Since h is the identity on

γ1, h(γ1) also winds once around z0. Now, using the homotopy h(γt) ⊂ Ĉ\ {z0,∞}
we see that h(γ0) = h(γ) winds once around z0. �

4. Circles map to circles

Our goal in this section is to show that a conformal map from a circle domain
satisfying the quasihyperbolic condition of Theorem 1.6 onto another circle domain
cannot “squeeze” a boundary circle to a point. This will be proved in Lemma 4.2.
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4.1. Fatness. Before stating the lemma, we will need the notion of fatness of a set.
A measurable set B ⊂ C is c-fat for some constant c > 0 if

(4.1) Area(B ∩B(z, r)) ≥ cr2

for all z ∈ B and 0 < r ≤ diam(B). A collection of sets is uniformly fat if there
exists a uniform c > 0 such that each of the sets in the collection is c-fat. We also
allow points to be considered fat (for any c > 0). Note that circular disks in the
plane are uniformly fat. The most important consequences of fatness that we will
use repeatedly are the following:

(F1) Suppose that B ⊂ C is a c-fat, closed, connected set, and assume it intersects
two concentric circles ∂B(z, r), ∂B(z,R) with 0 < r < R. Then there exists a
constant C > 0 depending only on c such that

Area(B ∩ (B(z,R) \B(z, r))) ≥ C(R − r)2.

To see that, note that by the connectedness of B there exists a point y ∈
B ∩ ∂B(z, (r +R)/2). Then B(y, (R− r)/2) ⊂ B(z,R) \B(z, r), and so

Area(B ∩ (B(z,R) \B(z, r))) ≥ c
(R− r)2

4
.

(F2) For a ball B(z, r) and a connected set B as above define

dr(B) := H1({s ∈ [0, r] : B ∩ ∂B(z, s) 6= ∅}).
Then (F1) implies that

Area(B ∩B(z, r)) & dr(B)2,

where the implicit constant depends only on c.
(F3) If B is as above and B ⊂ B(z, r), then dr(B) ≃ diam(B), with implicit

constants depending only on c. Indeed, trivially we have dr(B) ≤ diam(B),
and also the fatness implies that Area(B) ≃ diam(B)2 with implicit constant
depending only on c. On the other hand, since B ⊂ B(z, r), the area of B
can also be bounded from above by a multiple of diam(B) · dr(B). Hence,
diam(B)2 . diam(B)dr(B), which yields the conclusion.

(F4) Fatness is invariant under bi-Lipschitz maps. Namely, ifB is c-fat and T : B →
B∗ is L-bi-Lipschitz, then B∗ is c′-fat for a constant c′ depending only on c
and L. Moreover, fatness is invariant under scalings: if s > 0 and B is c-fat,
then sB = {sx : x ∈ B} is also c-fat. Combining these two facts with Koebe’s
distortion theorem (Lemma 2.18), we obtain that fatness is invariant under
conformal maps in sufficiently small scales :

Let f be a conformal map on a domain D ( C and consider a point z0 ∈ D,
0 < r ≤ dist(z0, ∂D), and 0 < c0 < 1. If B ⊂ B(z0, c0r) is a c-fat set, then
f(B) is a c′-fat set for a constant c′ depending only on c and c0.

A straightforward consequence of fatness of the complementary components of
a domain is the following:

Lemma 4.1. If the complementary components of a domain Ω∗ with ∞ ∈ Ω∗ are
uniformly fat, then for each ε > 0 there exist at most finitely many components B∗

of Ĉ\Ω∗ with diam(B∗) > ε. In particular, at most countably many complementary
components of Ω∗ can be non-degenerate.
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Proof. The components B∗ of C \ Ω∗ are disjoint and they satisfy Area(B∗) ≃
diam(B∗)2 by fatness. Comparing the sum of the areas of the components of Ĉ\Ω∗

to the area of a big ball B(0, R) containing them gives the desired conclusion. �

4.2. Circles map to circles. The next lemma is the heart of this section.

Lemma 4.2. Let Ω be a circle domain with ∞ ∈ Ω and let f be a conformal map
from Ω onto another domain Ω∗ with f(∞) = ∞ ∈ Ω∗. Suppose that Ω satisfies
the quasihyperbolic condition and that the complementary components of Ω∗ are
uniformly fat.

If E ⊂ ∂Ω is a non-degenerate continuum, then Clu(f, E) ⊂ ∂Ω∗ cannot be a
single point. In particular, f∗ cannot map a boundary circle of Ω onto a single
point boundary component of Ω∗.

Recall that Ω satisfies the quasihyperbolic condition if there exists a ball B(0, R)
containing all complementary components of Ω and a point x0 ∈ D := B(0, R) ∩Ω
such that the inequality ∫

D

k(x, x0)
2 dx < ∞

holds.

Proof of Lemma 4.2. We argue by contradiction, assuming that there exists a disk
Σ in the complement of Ω and an arc E ⊂ ∂Σ such that Clu(f, E) is a single point.
Since the quasihyperbolic condition is invariant under translations and scalings (see
Remark 2.1), we may assume that Σ is the unit disk D, and by postcomposing with
a translation, we may also assume that Clu(f, E) is the point 0 ∈ ∂Σ∗ ⊂ ∂Ω∗, where
Σ∗ = f∗(Σ). We write E = {eiθ : θ ∈ [θ1, θ2]}. We fix a small r > 0, and let H∗ be
the union of the complementary components of Ω∗ intersecting B(0, r), excluding
Σ∗. We also define H = (f∗)−1(H∗), W ∗ = B(0, r)∩Ω∗, and W = f−1(W ∗). Here,
H is the union of the complementary components of Ω corresponding to components
of H∗. However, to avoid introducing new notation, H and H∗ will also be used to
denote the corresponding collections of complementary components of Ω and Ω∗,
respectively.

We fix θ ∈ [θ1, θ2] and consider a ray γθ(t) = teiθ, 1 ≤ t ≤ t0, where t0 > 1 is
the first exit time of γθ from W ∪ H , i.e., the first time t0 > 1 such that γθ(t0)
intersects the closed set ∂(W ∪H). If such a time does not exist, then one can find
a sequence of points zn = γθ(tn), tn ց 1, such that zn /∈ W ∪H for all n ∈ N. The
diameters of the complementary components of Ω and Ω∗ converge to 0 by Lemma
4.1. Using Lemma 3.9 we may pass to a subsequence still denoted by zn such that

either zn ∈ Ω for all n ∈ N and f(zn) → 0 = Clu(f, E), or zn ∈ Bn ⊂ Ĉ \ Ω and
B∗

n = f∗(Bn) → 0. In the first case we have eventually f(zn) ∈ W ∗, so zn ∈ W , a
contradiction. In the second case we have eventually B∗

n ⊂ H∗, so zn ∈ Bn ⊂ H ,
which is again a contradiction.

We remark that γθ(t0) either lies in Ω, in which case we have f(γθ(t0)) ∈ ∂B(0, r),

or it lies in a complementary component B ⊂ Ĉ \ Ω such that B∗ ∩ ∂B(0, r) 6= ∅.
Indeed, if γθ(t0) lies in a complementary component B with B∗ ⊂ B(0, r) then by
(PT1) there exists a Jordan region U∗ with B∗ ⊂ U∗ ⊂ B(0, r) and ∂U∗ ⊂ Ω∗.
The preimage ∂U ⊂ W of ∂U∗ bounds a Jordan region U ⊂ W ∪H containing B;
see Lemma 3.2. Then γθ(t0) would lie in the interior of W ∪H and this contradicts
the choice of t0.
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Now, the idea is to obtain some estimates based on consideration of the set

f(γθ ∩W ) ∪
⋃

B∈H
B∩γθ 6=∅

B∗ ∪ {0}

“connecting” 0 to ∂B(0, r). The main difficulty however is that the set {B ∈ H :
B ∩ γθ 6= ∅} might be uncountable, and this makes estimates impossible. For this
reason, we use the transboundary chain provided by Corollary 2.13. Specifically, if
γθ(t0) ∈ Ω, then we can obtain a transboundary chain consisting of paths γ1, . . . , γm
and components B1, . . . , Bm−1 ⊂ Ĉ\Ω connecting the endpoints of γθ. The paths γi
are contained in Ω, except possibly for their endpoints, and also have several other
important properties that we are going to use. If γθ(t0) ∈ Bm for some component

Bm of Ĉ \ Ω, then we use Remark 2.14 instead to obtain a suitable transboundary
chain of the form (γ1, . . . , γm, Bm). Based on the properties of this transboundary
chain, we claim:

Claim 4.3. The transboundary chain C = (γ1, B1, . . . , γm−1, Bm−1, γm) given by
Corollary 2.13 (or C = (γ1, . . . , γm, Bm) given by Remark 2.14) satisfies

r .
∑

γi∈C

∑

Q∈W(D)
Q∩γi 6=∅

ℓ(Q) −
∫

Q

|f ′|+
∑

Bi∈C

dr(B
∗
i ),

where

dr(B
∗
i ) := H1({s ∈ [0, r] : B∗

i ∩ ∂B(0, s) 6= ∅})
is the radial diameter of B∗

i . The constants in the above inequality are uniform and
do not depend on r, θ, or the transboundary chain C given by Corollary 2.13.

We shall use the claim now and prove it later. By condition (v) of Corollary
2.13, for a fixed ε > 0, we may consider a transboundary chain C obtained from
γθ such that if Q ∈ W(D) is a Whitney cube with Q ∩ γθ = ∅ but Q ∩ γi 6= ∅ for
some i ∈ {1, . . . ,m}, then ℓ(Q) ≤ ε and SH(Q) ∩ γθ 6= ∅. Moreover, condition (iv)
asserts that the paths γi, i = 1, . . . ,m, intersect disjoint sets of Whitney cubes,
and condition (ii) implies that each component Bi ∈ C is intersected by γθ. Using
Claim 4.3 as well as the above properties we obtain

r .
∑

Q∩W 6=∅
Q∩γθ 6=∅

ℓ(Q) −
∫

Q

|f ′|+
∑

SH(Q)∩γθ 6=∅
ℓ(Q)≤ε

ℓ(Q) −
∫

Q

|f ′|+
∑

B∈H
B∩γθ 6=∅

dr(B
∗).(4.2)

Note that the last sum contains at most countably many non-zero terms, in view
of Lemma 4.1. The above inequality persists, if γθ denotes the full ray (instead of
the truncated one) from 0 to ∞.

For a set A ⊂ C and θ ∈ [0, 2π] we define χA∩γθ
= 1 if A∩ γθ 6= ∅ and otherwise

χA∩γθ
= 0. If the set A is compact, then the function θ 7→ χA∩γθ

is upper
semi-continuous, and thus measurable. Note that the cubes Q, the complementary
components B, and the shadows SH(Q) are compact; see Lemma 2.7. Therefore,
the functions θ 7→ χQ∩γθ

, θ 7→ χB∩γθ
, and θ 7→ χSH(Q)∩γθ

are measurable.
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Upon integrating (4.2) over [θ1, θ2] and applying Fubini’s theorem, we obtain:

(θ2 − θ1)r .
∑

Q∩W 6=∅

ℓ(Q) −
∫

Q

|f ′|
∫ 2π

0

χQ∩γθ
dθ

+
∑

Q∈W(D)
ℓ(Q)≤ε

ℓ(Q) −
∫

Q

|f ′|
∫ 2π

0

χSH(Q)∩γθ
dθ

+
∑

B∈H

dr(B
∗)

∫ 2π

0

χB∩γθ
dθ

=: A1 +A2 +A3.

(4.3)

We now treat each of the terms separately.
For A1 note that

∫ 2π

0

χQ∩γθ
dθ . diam(Q) ≃ ℓ(Q),

since Q ∩ D = ∅. Thus,

A1 .
∑

Q∩W 6=∅

∫

Q

|f ′| =
∫
⋃

Q∩W 6=∅ Q

|f ′|

. Area




⋃

Q∩W 6=∅

Q




1/2

·
(∫

⋃
Q∩W 6=∅ Q

|f ′|2
)1/2

≃ Area


 ⋃

Q∩W 6=∅

Q




1/2

· Area


 ⋃

Q∩W 6=∅

f(Q)




1/2

,

since f is conformal, and |f ′|2 is the Jacobian of f . As r → 0, we have W ∗ → {0},
and thus W is contained in arbitrarily small neighborhoods of D. This implies that
the first term above is o(1). Now we treat the second term. By Lemma 2.19, we
have diam(f(Q)) ≃ dist(f(Q), ∂Ω∗). On the other hand, if Q ∩W 6= ∅, then f(Q)
intersects B(0, r), so dist(f(Q), ∂Ω∗) ≤ r because 0 ∈ ∂Σ∗ ⊂ ∂Ω∗. It follows that
diam(f(Q)) . r, and thus f(Q) ⊂ B(0, cr) for a uniform constant c > 0, whenever
Q ∩W 6= ∅. We therefore obtain

Area


 ⋃

Q∩W 6=∅

f(Q)


 ≤ Area(B(0, cr)) ≃ r2.

Summarizing, we have

A1 = o(r).(4.4)

Next, we treat A2. Exactly as in the computation for A1, note that

∫ 2π

0

χSH(Q)∩γθ
dθ . diam(SH(Q)) = s(Q),
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because the shadows SH(Q) ⊂ ∂Ω lie outside D. Therefore,

A2 .
∑

Q∈W(D)
ℓ(Q)≤ε

ℓ(Q)

(
−
∫

Q

|f ′|2
)1/2

s(Q)

.

(∫
⋃

ℓ(Q)≤ε Q

|f ′|2
)1/2




∑

Q∈W(D)
ℓ(Q)≤ε

s(Q)2




1/2

.

Recall that r > 0 was fixed, and ε > 0 was arbitrary. As in the computation for A1,
the first term represents the area of a subset of f(D), and the latter is bounded.
The second term converges to 0 as ε → 0 by Lemma 2.8 and the quasihyperbolic
condition. Hence, A2 → 0 as ε → 0.

Finally, we compute a bound for the term A3. As before, the integral term is
bounded by diam(B), so

A3 .
∑

B∈H

dr(B
∗)diam(B) ≤

(
∑

B∗∈H∗

dr(B
∗)2

)1/2(∑

B∈H

diam(B)2

)1/2

.

Using property (F2) from Subsection 4.1 we obtain dr(B
∗)2 . Area(B∗ ∩B(0, r)).

Therefore, the first sum is bounded by Area(B(0, r))1/2 ≃ r. Since each B ∈ H is
a circle or a point, we trivially have diam(B)2 ≃ Area(B). Therefore, the second
term is comparable to

Area

(
⋃

B∈H

B

)1/2

.

As r → 0, all components B ∈ H are contained in arbitrarily small neighborhoods
of ∂D; this follows from Lemma 3.9 applied to f−1. Hence the above area term is
o(1). Summarizing, A3 = o(r).

Therefore, by (4.3) and (4.4), the vanishing of A2, and the preceding paragraph
we have

r . A1 +A3 = o(r),

a contradiction, since all the implicit multiplicative constants are independent of
r. �

Proof of Claim 4.3. The proof will be based on properties (i), (iii), and (vi) in
Corollary 2.13. That is, C is a transboundary chain connecting γθ(1) to γθ(t0) and
each of the paths γ1, . . . , γm of the chain C is piecewise linear. We will split the
proof in two cases: γθ(t0) ∈ Ω, in which case f(γθ(t0)) ∈ ∂B(0, r), and γθ(t0) lies

in a complementary component Bm ⊂ Ĉ \Ω such that B∗
m ∩ ∂B(0, r) 6= ∅.

Suppose first that γθ(t0) ∈ Ω, so f(γθ(t0)) ∈ ∂B(0, r). Then the chain C is
of the form (γ1, B1, . . . , γm−1, Bm−1, γm) and by (i), γ1 starts at a1 = γθ(1) ∈ E
and γm terminates at bm = γθ(t0). Let us assume that B∗

i ∩ ∂B(0, r) = ∅ for all
i = 1, . . . ,m− 1. In this case, B∗

i ⊂ B(0, r) by Lemma 3.2, so using property (F3)
from Subsection 4.1 we deduce that diam(B∗

i ) ≃ dr(B
∗
i ) for i = 1, . . . ,m − 1. By
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Lemma 3.4 the set

K :=
⋃

γi∈C

f(γi) ∪
⋃

Bi∈C

B∗
i

is a a continuum joining 0 ∈ Clu(f, a1) ⊂ Clu(f, E) to f(bm) ∈ ∂B(0, r). Therefore,

r ≤ diam(K) ≤
∑

γi∈C

diam(f(γi)) +
∑

Bi∈C

diam(B∗
i )

.
∑

γi∈C

diam(f(γi)) +
∑

Bi∈C

dr(B
∗
i ).

Note that Q ∩ γi, if non-empty, is contained in the union of two line segments by
Corollary 2.13(vi). Combining this with Lemma 2.19, we have

diam(f(γi)) ≤
∫

γi

|f ′|ds .
∑

Q∈W(D)
Q∩γi 6=∅

ℓ(Q)max
Q

|f ′| ≃
∑

Q∈W(D)
Q∩γi 6=∅

ℓ(Q) −
∫

Q

|f ′|.

This completes the proof in this case.
If B∗

k ∩∂B(0, r) 6= ∅ for some k = 1, . . . ,m−1, we assume that k is the first such
index, and consider the transboundary chain C′ = (γ1, B1, . . . , γk−1, Bk−1, γk) ⊂ C.
Note that f(γk) intersects the set B

∗
k, since γk intersects Bk. It follows from Lemma

3.4 that the set

K′ :=
⋃

γi∈C′

f(γi) ∪
⋃

Bi∈C′

B∗
i

is a continuum joining 0 to a point of a circle ∂B(0, r1), 0 < r1 ≤ r, where
∂B(0, r1) ∩ B∗

k 6= ∅. Note that dr(B
∗
k) ≥ r − r1. Since B∗

i ⊂ B(0, r) for all
i = 1, . . . , k− 1, we can argue for K′ as in the previous case of the proof and obtain

r = r1 + (r − r1) .
∑

γi∈C′

∑

Q∈W(D)
Q∩γi 6=∅

ℓ(Q) −
∫

Q

|f ′|+
∑

Bi∈C′

dr(B
∗
i ) + dr(B

∗
k).

This is the desired estimate.
Finally, we discuss the second case that C = (γ1, . . . , γm, Bm), where Bm ∩

∂B(0, r) 6= ∅. This is done exactly as the previous paragraph, by considering a
chain C′ = (γ1, B1, . . . , Bk−1, γk) ⊂ C such that B∗

i ⊂ B(0, r) for all i = 1, . . . , k− 1
and B∗

k ∩ ∂B(0, r) 6= ∅. �

5. Points map to points

In this section we prove that a conformal map from a circle domain satisfying
the quasihyperbolic condition onto another circle domain must map point boundary
components to point boundary components. In fact, we prove a more general result.

Lemma 5.1. Let Ω be a circle domain with ∞ ∈ Ω and let f be a conformal map
from Ω onto another domain Ω∗ with f(∞) = ∞ ∈ Ω∗. Suppose that Ω satisfies
the quasihyperbolic condition and that the complementary components of Ω∗ are
uniformly fat (closed) Jordan regions or points.

Then for each z0 ∈ ∂Ω the cluster set Clu(f, z0) ⊂ ∂Ω∗ cannot be a non-
degenerate continuum. In particular, f∗ cannot map a point boundary component
of Ω onto a non-degenerate component of ∂Ω∗.
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The proof is very similar to the proof of Lemma 4.2, so we omit some of the
details.

Proof. Suppose that the cluster set of the point 0 ∈ Σ ⊂ ∂Ω is a non-degenerate
continuum E∗ ⊂ Σ∗, with diam(E∗) = 1, after rescaling. We fix a small r > 0, and
consider the annulus Ar = A(0; r/2, r) := {z : r/2 < |z| < r}. We denote by H
the union of the complementary components of Ω intersecting Ar excluding Σ, and

by H∗ the union of the corresponding components of Ĉ \ Ω∗. Here H and H∗ will
also be used to denote the corresponding collections of components. We also define
W = Ar ∩ Ω and W ∗ = f(Ar ∩ Ω).

We fix ρ ∈ [r/2, r], and consider a circle γρ(t) = ρeit, t ∈ [0, 2π]. By Lemma
3.10, if r is sufficiently small, then there exist points z1, z2 ∈ γρ ∩ Ω such that

|f(z1)− f(z2)| ≥ diam(E∗)/2 = 1/2.

We now apply, for a fixed ε > 0, Corollary 2.13 to obtain from γρ a transboundary
chain C connecting z1 and z2. Using Lemma 3.4, we obtain the analog of Claim
4.3:

1/2 ≤ |f(z1)− f(z2)| .
∑

γi∈C

∑

Q∈W(D)
Q∩γi 6=∅

ℓ(Q) −
∫

Q

|f ′|+
∑

Bi∈C

diam(B∗
i ).

The implicit constant is independent of r, ρ, ε and of the transboundary chain C
obtained from γρ.

As in the proof of Lemma 4.2, the properties of the chain C from Corollary 2.13
yield for each ε > 0

1 .
∑

Q∈W(D)
Q∩γρ 6=∅

ℓ(Q) −
∫

Q

|f ′|+
∑

SH(Q)∩γρ 6=∅
ℓ(Q)≤ε

ℓ(Q) −
∫

Q

|f ′|+
∑

B∈H
B∩γρ 6=∅

diam(B∗).

Now, we integrate over ρ ∈ [r/2, r] and we obtain

r .
∑

Q∩W 6=∅

ℓ(Q) −
∫

Q

|f ′|ℓ(Q) +
∑

Q∈W(D)
ℓ(Q)≤ε

ℓ(Q) −
∫

Q

|f ′|s(Q) +
∑

B∈H

diam(B∗)δr(B)

=: A1 +A2 +A3,

where δr(B) := H1({s ∈ [r/2, r] : B ∩ ∂B(0, s) 6= ∅}).
The middle term A2 vanishes as ε → 0, because of the quasihyperbolic condition,

exactly as in the proof of Lemma 4.2. The first term A1 is bounded from above by

Area




⋃

Q∩W 6=∅

Q




1/2

·Area




⋃

Q∩W 6=∅

f(Q)




1/2

.

Note that the Whitney cubes intersecting W = Ar ∩ Ω must have sidelength
bounded by a constant multiple of r, since 0 ∈ ∂Ω. Hence, the first factor is
O(r). The second factor is o(1) as r → 0, since W ∗ → ∂Σ∗ as r → 0. Hence,
A1 = o(r). Finally, A3 is bounded above by

(
∑

B∗∈H∗

diam(B∗)2

)1/2(∑

B∈H

δr(B)2

)1/2

.
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By the fatness condition, the first factor is bounded by a constant multiple of the
area of the components B∗ ∈ H∗. Since all these components are contained in
arbitrarily small neighborhoods of Σ∗ as r → 0 (by Lemma 3.9), it follows that the
contribution here is o(1). The second factor, by the fatness of disks and property
(F1), is bounded by a constant multiple of the square root of the area of the annulus
Ar, so the contribution is O(r). Hence, A2 = o(r).

Summarizing, r . A1 +A3 = o(r), a contradiction. �

6. Continuous extension

We now have everything we need in order to prove homeomorphic extension to
the boundary.

Theorem 6.1. Let Ω be a circle domain with ∞ ∈ Ω and let f be a conformal map
from Ω onto another domain Ω∗ with f(∞) = ∞ ∈ Ω∗. Suppose that Ω satisfies the
quasihyperbolic condition and that the complementary components of Ω∗ are uni-
formly fat (closed) Jordan regions or points. Then f extends to a homeomorphism
from Ω onto Ω∗.

The proof is based on Lemmas 4.2 and 5.1.

Proof. First we prove that f extends continuously to Ω. Let Σ be a component of

Ĉ\Ω. If Σ is a point, then Σ∗ = f∗(Σ) has to be a singleton, by Lemma 5.1. Hence,
in this case f extends continuously to Ω∪Σ. If Σ is a disk, then by Lemma 4.2 the
component Σ∗ is a Jordan region. Suppose that f does not extend continuously to
a point p ∈ ∂Σ. Then, as Ω ∋ z → p, the images f(z) have to accumulate in at
least two distinct points of ∂Σ∗, from which we deduce that the cluster set Clu(f ; p)
is a non-degenerate continuum, by Proposition 3.5. This contradicts Lemma 5.1.
Therefore, f extends continuously to Ω. Note that f(Ω) = Ω∗, since any point of
∂Ω∗ is the accumulation point of a sequence f(zn), where Ω ∋ zn → ∂Ω.

Now, we wish to show that f is injective on Ω. Since Ω is compact, it will
then follow that we have a homeomorphism from Ω onto Ω∗, as desired. Note
that each component of ∂Ω is mapped continuously onto a component of ∂Ω∗,
and the correspondence of the components is one-to-one, because f∗ is bijective by
Proposition 3.1. Since point boundary components are mapped to point boundary
components, it follows that f is injective there. Hence, it suffices to prove that f
is injective when restricted to a circle component ∂Σ of ∂Ω.

Suppose that this is not the case. Then there exist two distinct points on ∂Σ that
are mapped to a single point p ∈ ∂Σ∗. Since the complementary components of Ω∗

are uniformly fat, their diameters converge to 0 by Lemma 4.1. We can therefore
apply Proposition 3.5 to f−1 : Ω∗ → Ω to deduce that E := Clu(f−1; p) is a non-
degenerate continuum. By the continuity of f on Ω it follows that Clu(f ;E) = p,
contradicting Lemma 4.2. �

7. Quasiconformal extension

Let Ω be a circle domain with ∞ ∈ Ω, and suppose that Ω satisfies the quasihy-
perbolic condition. The goal of this section is to prove that there exists a uniform
constant K such that every conformal map of Ω onto another circle domain extends

to a K-quasiconformal homeomorphism of Ĉ.
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7.1. Homeomorphic extension by reflection. Let f : Ω → Ω∗ be a conformal
map of Ω onto another circle domain Ω∗, and assume without loss of generality
that f(∞) = ∞ ∈ Ω∗. By Theorem 6.1, the map f extends to a homeomorphism
of Ω onto Ω∗, which we still denote by the letter f . Our goal now is to use repeated

Schwarz reflections to extend f to a homeomorphism of Ĉ that conjugates the
Schottky groups of Ω and Ω∗. First, we need some notation and definitions. The
interested reader may also want to consult [4, Section 3], which contains similar
material.

Let {γj} be the collection of disjoint circles in ∂Ω, and for each j denote by

Rj : Ĉ → Ĉ the reflection across the circle γj , i.e.,

Rj(z) := aj +
r2j

z − aj
,

where aj is the center and rj is the radius of the circle γj. Also, denote by Bj

the open disk bounded by the circle γj ; we remark that the letter B was used in

previous sections to denote a (closed) component of Ĉ \ Ω, but here Bj is open.

Note that the disks Bj have pairwise disjoint closures and that Ĉ \ Ω =
⋃

j Bj .

Definition 7.1. The Schottky group Γ(Ω) is the free discrete group of Möbius and
anti-Möbius transformations generated by the family of reflections {Rj}.

Thus Γ(Ω) consists of the identity map and all transformations of the form
T = Ri1 ◦ · · · ◦ Rik , k ≥ 1, where ij 6= ij+1 for j = 1, . . . , k − 1. If T ∈ Γ(Ω) is
represented in this form, then we say that T is written in reduced form and the
sequence of indices i1, . . . , ik is also called reduced whenever consecutive indices are
distinct.

With this reduced form, we define the length of T by l(T ) := k. The length of
the identity map is defined to be zero.

A simple observation that we will use repeatedly is that if T = Ri1 ◦· · ·◦Rik is in
reduced form, then T (Ω) ⊂ Bi1 . In particular T (Ω)∩Ω = ∅, and the map T cannot
be equal to the identity. This implies that the representation of T in reduced form
is unique and thus l(T ) is well-defined. Indeed, suppose that

Ri1 ◦ · · · ◦Rik = Rj1 ◦ · · · ◦Rjl

are distinct representations of T in reduced form. Using the fact that each reflection
Rj is its own inverse, we can simplify to obtain Rm1 ◦· · ·◦Rmn

= id for some n ≥ 1,
contradicting the above. See also [4, Proposition 3.1].

We remark that for each k ≥ 0 there are at most countably many T ∈ Γ(Ω) with
l(T ) = k.

Now, for each k ≥ 0, consider the union of reflected domains

Ωk :=
⋃

l(T )≤k

T (Ω),

where the union is taken over all elements T of the Schottky group Γ(Ω) with length
0 ≤ l(T ) ≤ k. We will need the following properties of the open sets Ωk.

Lemma 7.2. For each k ≥ 0, we have

(7.1) Ωk =
⋃

l(T )≤k

T (Ω),
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∂Ωk =
⋃

l(T )≤k

T (∂Ω),(7.2)

and

Ĉ \ Ωk = {Ri1 ◦ · · · ◦Rik(Bik+1
) : ij 6= ij+1, j = 1, . . . , k}

=
⊔

ij 6=ij+1

Ri1 ◦ · · · ◦Rik(Bik+1
),(7.3)

which is understood as
⋃

j Bj when k = 0. Moreover, for each reduced sequence
i1, . . . , ik+2 we have

Ri1 ◦ · · · ◦Rik+1
(Bik+2

) ⊂⊂ Ri1 ◦ · · · ◦Rik(Bik+1
),(7.4)

which is understood as Ri1(Bi2) ⊂⊂ Bi1 when k = 0.

Here A ⊂⊂ B means that the set A is compact and is contained in B.

Proof. We first prove by induction on k that the set Fk :=
⋃

l(T )≤k T (Ω) is closed.

Note that F0 = Ω, which is a closed set. Suppose that Fk is closed for some k ≥ 0,
and let wn be a sequence in Fk+1 with wn → w. For each n, write wn = Tn(zn),
where zn ∈ Ω and Tn ∈ Γ(Ω) with l(Tn) ≤ k + 1. If Tn is equal to the identity
map for infinitely many n, then wn = zn ∈ Ω for these values of n, which implies
that w ∈ Ω ⊂ Fk+1. We can therefore assume that Tn 6= id for all n. Now, write
Tn = Qn ◦ Sn, where Qn is the reflection across one of the boundary circles γj , say
Cn, and l(Sn) ≤ k. There are two possibilities to consider.

First, suppose that infinitely many of the reflections Qn are equal, say Qnj
= R

for all j. This gives wnj
= Tnj

(znj
) = R ◦ Snj

(znj
), so that R(wnj

) = Snj
(znj

) for

all j, since R−1 = R. But Snj
(znj

) ∈ Fk for all j and R(wnj
) → R(w) as j → ∞,

so that R(w) ∈ Fk, since Fk is assumed to be closed. This implies that w ∈ Fk+1,
as required.

In the second case, passing to a subsequence if necessary, we can assume that all

the reflections Qn are distinct. The closed disks Dn in Ĉ\Ω bounded by the circles
Cn are then pairwise disjoint and hence must have diameters converging to zero;
see Lemma 4.1. Now, note that wn ∈ Dn for all n, so that necessarily w ∈ ∂Ω,
since wn → w and the sequence of disks Dn can only accumulate at the boundary
of Ω. In particular, the limit point w belongs to Fk+1 ⊃ ∂Ω.

In both cases, we get that w ∈ Fk+1, so that Fk+1 is closed, completing the proof
by induction. Now, note that since Fk is a closed set containing Ωk, we must have
Ωk ⊂ Fk. The other inclusion is trivial, and (7.1) follows.

To prove (7.2), let w ∈ ∂Ωk, so that w ∈ Ωk but w /∈ Ωk. By (7.1), there exists
T ∈ Γ(Ω) with l(T ) ≤ k such that w ∈ T (Ω). Note that w cannot belong to T (Ω),
since w /∈ Ωk. It follows that w ∈ T (∂Ω). This shows that

∂Ωk ⊂
⋃

l(T )≤k

T (∂Ω).

For the other inclusion, suppose that T ∈ Γ(Ω) with l(T ) ≤ k. Then T (∂Ω) ⊂
T (Ω) ⊂ Ωk, by (7.1). On the other hand, it is easy to see that for every S ∈ Γ(Ω)
the set T (∂Ω) cannot intersect S(Ω), including when S = T . Indeed, suppose that
T (∂Ω)∩S(Ω) 6= ∅ for some S ∈ Γ(Ω). This implies that ∂Ω∩T−1(S(Ω)) 6= ∅. Note
that T−1(S(Ω)) is either equal to Ω if S = T , or it lies in an open disk of Ĉ \ Ω.



30 D. NTALAMPEKOS AND M. YOUNSI

In both cases we obtain a contradiction. It follows that T (∂Ω) ∩ Ωk = ∅. Thus
T (∂Ω) ⊂ ∂Ωk for each T ∈ Γ(Ω) with l(T ) ≤ k, and taking unions gives

⋃

l(T )≤k

T (∂Ω) ⊂ ∂Ωk.

This completes the proof of (7.2).

Finally, to prove (7.3), recall that Ĉ \ Ω =
⋃

j Bj , so that (7.3) holds for k = 0.

Now, suppose that k ≥ 1, and let w /∈ Ωk. Then in particular, we have that w /∈ Ω,
so that w ∈ Bi1 for some i1. Moreover, we have that Ri1(w) /∈ Ω, otherwise w would
lie in Ω1. Hence, there exists i2 6= i1 such that Ri1(w) ∈ Bi2 , i.e., w ∈ Ri1(Bi2).
Repeating this process, we get a reduced sequence of indices i1, . . . , ik+1 such that
w ∈ Ri1 ◦ · · · ◦Rik(Bik+1

). This shows that

Ĉ \ Ωk ⊂ {Ri1 ◦ · · · ◦Rik(Bik+1
) : ij 6= ij+1, j = 1, . . . , k}.

To prove the reverse inclusion, let w = Ri1 ◦ · · · ◦ Rik(z) for z ∈ Bik+1
, where

ij 6= ij+1 for j = 1, . . . , k. Suppose for a contradiction that w ∈ Ωk. Then by (7.1),

we have that w = S(z0) for some S ∈ Γ(Ω) with l(S) ≤ k and some z0 ∈ Ω. Writing
S = Rj1 ◦ · · · ◦Rjl , l ≤ k, in reduced form, we get

Ri1 ◦ · · · ◦Rik(z) = Rj1 ◦ · · · ◦Rjl(z0).

But the left-hand side belongs to Bi1 while the right-hand side belongs to Bj1 , so
that i1 = j1, since the disks Bj have pairwise disjoint closures. Simplifying and
repeating this argument, we get

Ril+1
◦ · · · ◦Rik(z) = z0,

if l < k, or z = z0, if l = k. This is clearly impossible since z ∈ Bik+1
and z0 ∈ Ω.

It follows that

{Ri1 ◦ · · · ◦Rik(Bik+1
) : ij 6= ij+1, j = 1, . . . , k} ⊂ Ĉ \ Ωk,

as required. A similar argument shows that the disks Ri1 ◦ · · · ◦ Rik(Bik+1
) are

disjoint for distinct reduced sequences i1, . . . , ik+1. This completes the proof of
(7.3).

For (7.4) we note that Rik+1
(Bik+2

) ⊂⊂ Bik+1
since the circles γik+1

, γik+2
⊂ ∂Ω

are disjoint. Applying the reflections Rik , . . . , Ri1 to both sides of the inclusions
gives the result. �

By (7.3), the complement of Ωk is the union of disjoint open disks, each obtained

by k reflections of a disk in Ĉ \ Ω.
Proposition 7.3. The area of each disk in the complement of Ωk tends to zero as
k → ∞.

See also [4, Lemma 3.3].

Proof. We first prove the result in the case where ∂Ω contains only finitely many
circles.

A simple calculation shows that the absolute value of the Jacobian of Rj is
r4j /|z−aj|4, which is less than r4j /d

4 < 1 on
⋃

k 6=j Bk, where d > 0 is the infimum of
the distances between aj and each γk, k 6= j. Now, since there are only finitely many
circles γj , the ratio r4j /d

4 can be bounded uniformly away from 1, independently of
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j, so that the area of each disk decreases by a definite amount after each reflection.
This proves the result in this case. Our computation also shows that the reflection
from the exterior to the interior of a circle is area-decreasing.

For the general case, suppose for a contradiction that there exists some ε > 0

and disks Dk ⊂ Ĉ \Ωk, k ∈ N, such that for each k, Dk has area larger than ε. By

(7.3) each Dk is necessarily obtained by reflections of a disk Bjk in Ĉ \Ω with area
larger than ε along finitely many circles, each of them bounding a disk with area
also larger than ε. This is because these reflections are area-decreasing, by the first

part of the proof. However, there are only finitely many disks in Ĉ \ Ω with area
bigger than ε, so Dk is obtained by reflecting along the same finite family of circles
for all k ∈ N. The first part of the proof then gives a contradiction. �

We define Ω∞ =
⋃∞

k=0 Ωk. Then we have the following immediate consequence
of Lemma 7.2 and Proposition 7.3:

Corollary 7.4. For each z ∈ Ĉ \ Ω∞ there exist a unique sequence of indices
{ij}j∈N with ij 6= ij+1 for j ∈ N, and disks D0 = Bi1 , Dk = Ri1 ◦ · · · ◦Rik(Bik+1

),
such that Dk+1 ⊂⊂ Dk for k ≥ 0, and {z} =

⋂∞
k=0 Dk.

Conversely, if Dk is a sequence of disks as above, then
⋂∞

k=0 Dk is a single point

contained in Ĉ \ Ω∞.

Now, if f : Ω → Ω∗ is a conformal map of Ω onto another circle domain Ω∗ that
extends to a homeomorphism of Ω onto Ω∗, we denote by {γ∗

j } the collection of

boundary circles in ∂Ω∗, enumerated in such a way that f(γj) = γ∗
j for all j. We

also denote by B∗
j the open disk in Ĉ \ Ω∗ bounded by the circle γ∗

j . Also, let R∗
j

be the reflection across the circle γ∗
j and Γ(Ω∗) be the Schottky group of Ω∗. We

denote by T ∗ the element of Γ(Ω∗) corresponding to T ∈ Γ(Ω) and observe that
(T ∗)−1 = (T−1)∗. Finally, we define the sets Ω∗

k by

Ω∗
k :=

⋃

l(T∗)≤k

T ∗(Ω∗).

The proof of the following extension result was sketched in [10, Lemma 3.1]. We
give a complete proof for the convenience of the reader.

Lemma 7.5. The map f : Ω → Ω∗ extends uniquely to a homeomorphism f̃ : Ĉ →
Ĉ that conjugates the Schottky groups of Ω and Ω∗, i.e.,

T ∗ = f̃ ◦ T ◦ f̃−1 (T ∈ Γ(Ω)).

Proof. First define f̃ on Ω1 by

f̃ :=

{
f on Ω
R∗

j ◦ f ◦Rj on Rj(Ω).

Next, extend f̃ to Ω2 by defining

f̃ := (R∗
k ◦R∗

j ) ◦ f ◦ (Rj ◦Rk) on Rk ◦Rj(Ω).

Repeating this process defines an extension f̃ of f to Ω∞ =
⋃∞

k=0 Ωk. By con-

struction, the map f̃ is a bijection that conjugates the Schottky groups Γ(Ω),Γ(Ω∗)

and maps Ω∞ onto Ω∗
∞ :=

⋃∞
k=0 Ω

∗
k. Note that f̃ is conformal on

⋃∞
k=0 Ωk.
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Now, we claim that f̃ is continuous on Ω∞. Indeed, let wn = Tn(zn) be a
sequence in Ω∞ that converges to w = T (z), where Tn, T ∈ Γ(Ω) and zn, z ∈ Ω.

We have to show that f̃(wn) → f̃(w). This is equivalent to f̃((T−1 ◦ Tn)(zn)) →
f̃(z), since f̃ conjugates Γ(Ω) and Γ(Ω∗). We can therefore assume that T is the

identity, so that w = z ∈ Ω. Now, we show that every subsequence of f̃(wn) has a

subsequence that converges to f̃(w), which implies that f̃(wn) → f̃(w), as desired.

Consider an arbitrary subsequence, that we still denote by f̃(wn) for simplicity.

If Tn is equal to the identity for infinitely many n, then f̃(wn) = f̃(zn) for these

values of n, and this gives a subsequence that converges to f̃(w), since zn ∈ Ω

and f̃ is continuous on Ω. We can therefore assume, passing to a subsequence if
necessary, that Tn 6= id for all n. Write Tn = Rjn ◦Sn, where Rjn is the reflection in
the disk Bjn , and Sn ∈ Γ(Ω). Now, suppose that infinitely many Rjn are distinct.
Then, passing to a subsequence, we get a sequence of pairwise disjoint disks Bjn

with wn ∈ Bjn for all n. The diameters of these disks converge to zero, so for each

n we can choose w′
n ∈ ∂Bjn ⊂ Ω with |w′

n − wn| → 0. In particular, the sequence

w′
n also converges to w, so that f̃(w′

n) → f̃(w), by the continuity of f̃ on Ω. But

by construction, both f̃(w′
n) and f̃(wn) belong to the closed disk B∗

jn
, from which

it follows that |f̃(wn)− f̃(w′
n)| → 0. This implies that f̃(wn) → f̃(w), as required.

Passing to a subsequence, we may therefore assume that Rjn = Ri for all n,

for some i ∈ N. Then wn = Ri(Sn(zn)) ∈ Bi for all n, and since wn → w and
w ∈ Ω, the only possibility is that w ∈ ∂Bi. In particular Ri(w) = w, and we
get that Sn(zn) = Ri(wn) converges to w. If Sn is the identity for infinitely many
n, or if Sn = Rkn

◦ Qn for infinitely many n where the Rkn
are distinct, then

arguing as above gives f̃(Sn(zn)) → f̃(w), after passing to a subsequence. Hence

R∗
i ◦ f̃(Sn(zn)) → R∗

i ◦ f̃(w), i.e., f̃(wn) → f̃(w), again using the fact that f̃
conjugates the Schottky groups. The only remaining case is Sn = Rk ◦ Qn for all
n, for some k ∈ N. But then each wn = Ri ◦ Rk ◦ Qn(zn) belongs to the closed
disk Ri(Bk), a compact subset of Bi. This is clearly impossible since wn → w and
w ∈ ∂Bi.

This completes the proof that f̃ is continuous on Ω∞. The same argument shows

that f̃−1 is continuous on Ω∗
∞, and f̃ is a homeomorphism of Ω∞ onto Ω∗

∞.

Now, we extend f̃ to the whole Riemann sphere in the following way. Suppose
that z /∈ Ω∞. By Corollary 7.4, the point z belongs to a unique nested sequence of
disks Dk of the form Dk := Ri1 ◦ · · · ◦ Rik(Bik+1

), where ij 6= ij+1 for all j ∈ N.

Each disk D∗
k := R∗

i1 ◦ · · · ◦R∗
ik
(B∗

ik+1
) is contained in Ĉ \Ω∗

k by (7.3) and the disks

D∗
k are also nested by (7.4). Corollary 7.4 implies that the sequence D∗

k must shrink

to a single point w ∈ Ĉ \ Ω∗
∞. We define f̃(z) := w. The existence and uniqueness

of the sequence D∗
k shrinking to w from Corollary 7.4 implies that this definition

gives a bijection f̃ from Ĉ \ Ω∞ onto Ĉ \ Ω∗
∞.

Observe that for each disk Dk of the form Ri1 ◦ · · ·◦Rik(Bik+1
) we have f̃(Dk) =

D∗
k = R∗

i1 ◦ · · · ◦ R∗
ik
(B∗

ik+1
). Indeed, the equality f̃(Dk ∩ Ω∞) = D∗

k ∩ Ω∗
∞ follows

from the definition of f̃ on Ω∞ and the fact that it conjugates the Schottky groups

of Ω and Ω∗. The equality f̃(Dk \Ω∞) = D∗
k \Ω∗

∞ follows from the definition of f̃
in the previous paragraph, together with the nesting property (7.4).
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It remains to show that f̃ as defined is a homeomorphism of Ĉ. By the com-

pactness of Ĉ, it suffices to show that f̃ is continuous. First, note that Ω∞ is dense

in Ĉ, by Proposition 7.3. Continuity will thus follow if we prove that if z ∈ Ĉ \Ω∞

and if zn is a sequence in Ω∞ converging to z, then f̃(zn) → f̃(z). We fix a disk

D∗
k as above with f̃(z) ∈ D∗

k. Since zn → z, we have zn ∈ Dk for all sufficiently

large n. Hence, f̃(zn) ∈ D∗
k and lim supn→∞ |f̃(zn) − f̃(z)| ≤ diam(D∗

k). Propo-
sition 7.3 now concludes the proof. This completes the proof of the existence of a

homeomorphic extension f̃ : Ĉ → Ĉ of f that conjugates the Schottky groups.

Finally, to prove uniqueness, suppose that g : Ĉ → Ĉ is another homeomorphic
extension of f that conjugates the Schottky groups of Ω and Ω∗. Then for T ∈ Γ(Ω)
and z ∈ Ω, we have

f̃(T (z)) = T ∗(f̃(z)) = T ∗(g(z)) = g(T (z)),

since f̃ = f = g on Ω and both f̃ and g conjugate the Schottky groups. It follows

that f̃ = g on Ω∞, and hence everywhere on Ĉ, by the continuity of f̃ and g and
by the density of Ω∞. �

7.2. Quasiconformality. Our goal now is to show that the map f̃ of Lemma 7.5

is actually K-quasiconformal on Ĉ, for some K depending only on Ω. First, we
give a brief introduction to quasiconformal mappings, referring the reader to [17]
for more information.

Let K ≥ 1, let U, V be domains in C and let f : U → V be an orientation-
preserving homeomorphism. We say that f is K-quasiconformal on U if it belongs
to the Sobolev space W 1,2

loc (U) and satisfies the Beltrami equation

∂zf = µ∂zf

almost everywhere on U , for some measurable function µ : U → D with ‖µ‖∞ ≤
K−1
K+1 . In this case, the number K ≥ 1 is called the quasiconformal dilatation
of f and the function µ its Beltrami coefficient, denoted by µf . An orientation-

preserving homeomorphism of the Riemann sphere Ĉ is K-quasiconformal if it is

K-quasiconformal in local coordinates, using the standard conformal charts of Ĉ.
A mapping is conformal if and only if it is 1-quasiconformal; see [17, pp. 182–

183]. This is usually referred to as Weyl’s lemma. Furthermore, inverses of K-
quasiconformal mappings are also K-quasiconformal, and the composition of a
K1-quasiconformal mapping and a K2-quasiconformal mapping is K1K2-quasi-
conformal; see [17, p. 17]. Another well-known property of quasiconformal map-
pings is that they preserve sets of area zero; see [17, Theorem 1.3, p. 165].

The following theorem is of central importance in the theory of quasiconformal
mappings; see [17, Chapter V, p. 191 ff.].

Theorem 7.6 (Measurable Riemann mapping theorem). Let U be a domain in Ĉ

and let µ : U → D be a measurable function with ‖µ‖∞ < 1. Then there exists a
quasiconformal mapping f on U such that µ = µf , i.e.,

∂zf = µ∂zf

almost everywhere on U . Moreover, the map f is unique up to postcomposition with
a conformal map.

We can now state the main result of this section.
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Theorem 7.7. Let Ω be a circle domain containing ∞ and satisfying the quasi-
hyperbolic condition. Then there exists a constant K ≥ 1 depending only on
Ω such that every conformal map f of Ω onto another circle domain Ω∗ with

f(∞) = ∞ ∈ Ω∗ extends to a unique K-quasiconformal mapping of Ĉ that con-
jugates the Schottky groups of Ω and Ω∗, in the sense of Lemma 7.5.

The proof of Theorem 7.7 is based on conformal modulus estimates.

If A ⊂ Ĉ is a non-degenerate (open) topological annulus, i.e., Ĉ\A has precisely
two connected components each containing more than one point, then A is confor-
mally equivalent to a unique annulus of the form A(z0; 1, r) = {z : 1 < |z−z0| < r}
for some r > 1. Such an annulus whose boundary components are concentric circles
is called a circular annulus. We define the conformal modulus of A by

Mod(A) :=
1

2π
log r.

The conformal modulus Mod(A) is a conformal invariant: if two (non-degenerate)
annuli A and A′ are conformally equivalent, then they have the same conformal
modulus.

We shall need the following properties of conformal modulus.

(M1) (Superadditivity (or Grötzsch inequality) [17, Chapter I, Lemma 6.3]) If
A1, . . . , An are disjoint annuli contained in A such that each annulus Aj

separates the complementary components of A (in other words, the annuli
Aj , j = 1, . . . , n, are nested inside A), then

Mod(A) ≥
n∑

j=1

Mod(Aj).

(M2) (Teichmüller’s module theorem [17, Chapter II, Section 1.3]) If A separates
the points 0 and z1 from z2 and ∞, then

Mod(A) ≤ 2µ

(√
|z1|

|z1|+ |z2|

)
,

where µ(x) is a positive decreasing function of x ∈ (0, 1).

It is well-known that the notion of conformal modulus of annuli is related to
quasiconformality.

Lemma 7.8. Let f : Ĉ → Ĉ be an orientation-preserving homeomorphism with
f(∞) = ∞. Suppose that there are positive constants M1,M2 such that for any
circular annulus A ⊂ C with Mod(A) ≥ M1 we have

(7.5) Mod(f(A)) ≥ M2 Mod(A).

Then f is K-quasiconformal for some K depending only on M1 and M2.

Proof. The following argument is sketched in [10].
Fix z0 ∈ C, and assume without loss of generality that f(z0) = 0. For ρ > 0

sufficiently small, let

Rρ := max
θ

|f−1(ρeiθ)− z0|
and

rρ := min
θ

|f−1(ρeiθ)− z0|,



RIGIDITY THEOREMS FOR CIRCLE DOMAINS 35

so that the circular dilatation of f−1 at 0 is

Hf−1(0) := lim sup
ρ→0

Rρ

rρ
.

If Aρ is the annulus {z : rρ < |z − z0| < Rρ}, then f(Aρ) is a topological annulus
separating 0 and ∞, and both boundary components of f(Aρ) intersect the circle
{w : |w| = ρ}. By Teichmüller’s module theorem (M2), Mod(f(Aρ)) is uniformly
bounded above, independently of z0 and ρ. The assumption (7.5) then gives a
uniform upper bound on Mod(Aρ) = 1

2π log (Rρ/rρ). It follows that the circular

dilatation of f−1 is uniformly bounded. By [17, Chapter IV, Theorem 4.2], the
map f−1, and thus also f , is K-quasiconformal for some K depending only on
M1,M2. �

Now we return to the proof of Theorem 7.7.

Proof of Theorem 7.7. Let Ω be a circle domain containing ∞ and satisfying the
quasihyperbolic condition, and let f be a conformal map of Ω onto another circle
domain Ω∗ with f(∞) = ∞ ∈ Ω∗. Recall that by Lemma 7.5, the map f extends to

a unique homeomorphism of Ĉ that conjugates the Schottky groups of Ω and Ω∗.
For convenience, we denote this extension by the same letter f . We have to show

that f : Ĉ → Ĉ is K-quasiconformal, for some constant K ≥ 1 depending only on
Ω. Assuming the following lemma, we finish the proof.

Lemma 7.9. There exist positive constants C1 and C2 such that if A ⊂ C is any
circular annulus with Mod(A) ≥ C1, then Mod(f(A)) ≥ C2.

Let L = e2πC1 > 1, and let A ⊂ C be a circular annulus with

Mod(A) >
1

2π
logL = C1.

Without loss of generality, assume that A = {z : 1 < |z| < r} where r > L. Let
n ∈ N be such that Ln < r ≤ Ln+1, and for j ≥ 1, let Aj := {z : Lj−1 < |z| < Lj},
so that Mod(Aj) = C1. By Lemma 7.9 and property (M1) of conformal modulus,
we have

Mod(f(A)) ≥
n∑

j=1

Mod(f(Aj))

≥ nC2

=
n

n+ 1

2πC2

logL

(
1

2π
(n+ 1) logL

)

≥ 1

2

2πC2

logL

(
1

2π
log r

)

=: M2Mod(A).

The result now follows from Lemma 7.8. �

7.3. Proof of Lemma 7.9. The proof will be very similar to the proofs of Lemma
4.2 and Lemma 5.1, but here we shall need to make use of the absolute continuity
lemmas from Subsection 2.3. This is a complication that is not present in the
proof of He and Schramm [10, Lemma 4.2], because of their assumption that the
boundary of the domain has σ-finite length.
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We fix a circular annulus A of modulus greater than 1
2π log 2 so that it contains

the closure of a circular annulus A0 that is homothetic to the annulus A(0; 1, 2).
Using a homothety, we may assume that A0 = A(0; 1, 2) ⊂⊂ A. Let A∗ = f(A),
and consider a conformal map h from A∗ to a circular annulus A# = A(0; 1, R). It
suffices to bound the modulus of A#, i.e., 1

2π logR, from below.

Consider the sets Ωk of Subsection 7.1. The set Ĉ \ Ωk consists of (at most)
countably many open disks (by (7.3)) with diameters converging to 0 as k → ∞,
by Proposition 7.3. Hence, if k is sufficiently large, we may assume that each such
complementary disk B intersecting the annulus A0 is so small that it is contained in
A, and has distance at least 2diam(B) > 0 from ∂A. Since f is a homeomorphism,
the disk f(B) also has a distance 2diam(f(B)) > 0 from ∂A∗, whenever B ∩
A0 6= ∅, provided that we pick an even larger k. Property (F4) in Subsection 4.1
now shows that h(f(B)) is c-fat for a universal c. Moreover, we may have that
diam(h(f(B))) ≤ 1/2, if k is sufficiently large.

Summarizing, if we consider the map g = h ◦ f : A → A#, we have that each

complementary disk B ⊂ Ĉ \ Ωk intersecting A0 ⊂⊂ A is contained in A and its
image g(B) is c-fat and has diameter bounded above by 1/2. Here, k is fixed, and
is sufficiently large, depending on A,A0, and f . We denote by H the collection of
these disks B.

By Proposition 2.15 we have that H1(f(γr ∩ ∂Ω)) = 0 for a.e. 1 < r < 2, where
γr ⊂ A0 denotes the circle of radius r around 0. We claim that this remains valid
if ∂Ω is replaced with ∂Ωk. Indeed, reflecting across a circle component of ∂Ω
yields a domain R(Ω) inside this circle that is bi-Lipschitz-equivalent to Ω, away
from ∞. In general, if T ∈ Γ(Ω), then T is the composition of finitely many
reflections, so T (Ω) is bi-Lipschitz-equivalent to Ω away from ∞. By Remark
2.1, the quasihyperbolic condition (2.1) is invariant under bi-Lipschitz maps, so
the reflected domain T (Ω) also satisfies it. It follows from Proposition 2.15 that
H1(f(γr ∩ ∂T (Ω))) = H1(f(γr ∩ T (∂Ω))) = 0 for a.e. 1 < r < 2. Note that there
are at most countably many T ∈ Γ(Ω) with l(T ) ≤ k. Therefore, by (7.2) we have

H1(f(γr ∩ ∂Ωk)) = H1

(
f

(
γr ∩

⋃

l(T )≤k

T (∂Ω)

))
≤

∑

l(T )≤k

H1(f(γr ∩ T (∂Ω))) = 0

for a.e. 1 < r < 2. Since the conformal map h : A∗ → A# is smooth, it is Lipschitz
continuous on f(γr) ⊂ f(A0) ⊂⊂ A∗, so it follows that

H1(g(γr ∩ ∂Ωk)) = 0(7.6)

for a.e. 1 < r < 2.
We fix such an r ∈ (1, 2). Using this absolute continuity property we wish to

apply Lemma 2.17 in order to prove the estimate

1 ≤
∫

γr∩Ωk

|g′| ds+
∑

B∈H
B∩γr 6=∅

diam(g(B)).(7.7)

Consider the function g ◦ γr(x) = g(reix), x ∈ R, and let Z = γ−1
r (Ωk) and

K = γ−1
r (∂Ωk); here γr is treated as a complex-valued function of a real variable,

rather than as a set. Note that ∂Z ⊂ γ−1
r (∂Ωk); this follows from the general fact

that if φ : X → Y is a continuous map between topological spaces and C ⊂ Y is
a closed set, then ∂φ−1(C) ⊂ φ−1(∂C). We trivially have ∂Ωk ⊂ ∂Ωk, so ∂Z is
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contained in K, as required in the statement of Lemma 2.17. Consider now the
function G := (g ◦ γr)|Z and observe that G is locally absolutely continuous on
Z \ K = γ−1

r (Ωk); indeed if γr(x) = reix ∈ Ωk, then g = h ◦ f is conformal in a
neighborhood of reix, so G′ exists and is continuous in a neighborhood of x. Finally,
by (7.6) we have

H1(G(K)) = H1(g(γr ∩ ∂Ωk)) = 0.

We are exactly in the setting of Lemma 2.17, so if (xi, yi), i ∈ I, denote the
complementary intervals of Z, then

|G(x) −G(y)| ≤
∫

[x,y]∩(Z\K)

|G′(x)|dx +
∑

[x,y]∩(xi,yi) 6=∅

|G(xi)−G(yi)|

for all x, y ∈ Z. Since Ĉ \ Ωk is the union of disjoint open disks by (7.3), each
complementary interval (xi, yi) of Z is mapped by γr to an arc contained in a

disk B ⊂ Ĉ \ Ωk and whose endpoints lie in ∂B. Moreover, if x0 ∈ Z, then
the complementary intervals (xi, yi) of Z contained in [x0, x0 + 2π] correspond to

distinct disks B ⊂ Ĉ\Ωk, because the intersection of an open disk B with the circle
γr([x0, x0 + 2π]) cannot consist of more than one arcs. Hence, the above estimate
implies that

|G(x) −G(y)| ≤
∫

γr∩Ωk

|g′| ds+
∑

B∈H
B∩γr 6=∅

diam(g(B))

for all x, y ∈ [x0, x0 + 2π]. If we show that there exists y0 ∈ [x0, x0 + 2π] with
|G(x0)−G(y0)| ≥ 1, then we arrive to the desired inequality (7.7).

The point G(x0) ∈ A# lies outside the ball B(0, 1). Since g(γr) surrounds
the ball B(0, 1), there exists a point w0 ∈ g(γr) that is “antipodal” to G(x0), in
the sense that it lies on the line through 0 and G(x0) and |G(x0) − w0| ≥ 2. If
w0 ∈ G(Z), then there exists y0 ∈ [x0, x0 + 2π] such that G(y0) = w0, so our
claim is proved. If w0 /∈ G(Z), then w0 ∈ g(B) for some disk B ∈ H intersecting
γr. Then there exists a complementary interval (xi, yi) ⊂ [x0, x0 + 2π] of Z with
γr(xi), γr(yi) ∈ ∂B, so G(yi) ∈ ∂g(B). We have |w0 −G(yi)| ≤ diam(g(B)) ≤ 1/2.
Therefore |G(x0)−G(yi)| ≥ |G(x0)−w0|−|w0−G(yi)| ≥ 1, and our claim is proved
with y0 = yi.

Now we proceed exactly as in the the proof of [10, Lemma 4.2]. We integrate
(7.7) over r ∈ (1, 2) to get

1 ≤
∫

A0∩Ωk

|g′|+
∑

B∈H

diam(g(B))d(B),(7.8)

where d(B) = H1({s ∈ [1, 2] : B ∩ B(0, s) 6= ∅}), and d(B)2 . Area(B ∩ A0) by
(F1). By the Cauchy-Schwarz inequality, the square of the integral term is bounded
by

∫

A0∩Ωk

|g′|2 ·Area(A0 ∩ Ωk) ≤ Area(A#) ·Area(A0) = π(R2 − 1) · 3π.
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Similarly, using the fatness of g(B), the square of the summation term in (7.8) can
be bounded by

∑

B∈H

diam(g(B))2 ·
∑

B∈H

d(B)2 .
∑

B∈H

Area(g(B)) ·
∑

B∈H

Area(B ∩ A0)

. Area(A#) · Area(A0) = 3π2(R2 − 1).

Summarizing, by (7.8) we have R2 − 1 ≥ C for a universal C > 0, which implies
that logR is bounded from below, as desired. �

8. Proof of Theorem 1.6

In this section, we conclude the proof of Theorem 1.6. Let Ω be a circle domain
containing ∞ and satisfying the quasihyperbolic condition, and let f : Ω → Ω∗ be
a conformal map of Ω onto another circle domain Ω∗. Without loss of generality,
assume that f(∞) = ∞ ∈ Ω∗. By Theorem 7.7, the map f extends to a K-
quasiconformal mapping of the whole sphere that conjugates the Schottky groups,
for some K ≥ 1 depending only on Ω. Again, we denote the extension by the same
letter f .

We now use quasiconformal deformation of Schottky groups to prove that f must
be a Möbius transformation, thereby showing that Ω is conformally rigid. First,
we need some preliminaries on invariant Beltrami coefficients with respect to a
Schottky group.

Let V ⊂ C be open and let µ : V → D be measurable. If f : U → V is a
quasiconformal mapping, then we define a measurable function f∗µ : U → D, called
the pullback of µ under f , by

f∗µ :=
∂zf + (µ ◦ f)∂zf
∂zf + (µ ◦ f)∂zf

.

Similarly, we define the Beltrami coefficient of an orientation-reversing quasicon-
formal mapping f : U → V by µf := µf and the pullback f∗µ by

f∗µ =
∂zf + (µ ◦ f)∂zf
∂zf + (µ ◦ f)∂zf

.

Here by orientation-reversing quasiconformal mapping we mean the complex con-
jugate of a quasiconformal mapping. The notation f∗ here should not be confused
with the notation in Proposition 3.1.

With these definitions, the coefficient µf is simply the pullback of µ0 ≡ 0 under
f . Moreover, pullbacks satisfy the natural property

(f ◦ g)∗µ = g∗(f∗µ).

Now, we say that a measurable function µ : Ĉ → D is invariant with respect to

a Schottky group Γ(Ω) if T ∗µ = µ almost everywhere on Ĉ, for every T ∈ Γ(Ω).
This is equivalent to

µ = (µ ◦ T )∂zT/∂zT
or

µ = (µ ◦ T )∂zT/∂zT
depending on whether T is Möbius or anti-Möbius, respectively.
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Proposition 8.1. Let f : Ĉ → Ĉ be a quasiconformal mapping and let Ω be a circle
domain. Then the Beltrami coefficient µf is invariant with respect to the Schottky
group Γ(Ω) if and only if f maps Ω onto another circle domain Ω∗ and it conjugates
Γ(Ω) and Γ(Ω∗).

Proof. Suppose that µf is invariant with respect to Γ(Ω). To prove that Ω∗ = f(Ω)
is a circle domain, it suffices to show that f(γj) is a circle for each circle γj in ∂Ω.
Fix γj , and as before let Rj be the reflection across γj . We have

(f ◦Rj ◦ f−1)∗µ0 = (f−1)∗(R∗
j (f

∗µ0)) = (f−1)∗(f∗µ0) = µ0,

where we used the fact that R∗
jµf = µf , by invariance of µf . This shows that the

Beltrami coefficient of the map f ◦Rj ◦ f−1 is zero almost everywhere, so that it is
anti-Möbius. But it fixes f(γj), so that f(γj) must be a circle and R∗

j :=f ◦Rj ◦f−1

is the reflection across that circle. It follows that Ω∗ is a circle domain, as required.
Moreover, we clearly have

T ∗ = f ◦ T ◦ f−1 (T ∈ Γ(Ω)),

where T ∗ denotes the element of Γ(Ω∗) corresponding to T ∈ Γ(Ω) (see also the
comments before Lemma 7.5), so that f indeed conjugates Γ(Ω) and Γ(Ω∗).

Conversely, suppose that f maps Ω onto another circle domain Ω∗, and that it
conjugates Γ(Ω) and Γ(Ω∗). Then for each j, the map f ◦Rj ◦ f−1 is anti-Möbius,
so that

µ0 = (f ◦Rj ◦ f−1)∗µ0 = (f−1)∗(R∗
j (f

∗µ0)).

Taking the pullback of both sides by f gives µf = R∗
j (µf ). This implies that µf is

invariant with respect to Γ(Ω). �

We can now proceed with the proof of Theorem 1.6.

Proof. Recall that by Theorem 7.7, every conformal map of Ω onto another circle

domain extends to a unique K-quasiconformal mapping of Ĉ that conjugates the
Schottky groups, for some K ≥ 1 depending only on Ω.

Let f be such a map, and suppose that f is not Möbius, so that K > 1 and
‖µf‖∞ > 0. Let (K − 1)/(K + 1) < c < 1, and set ν := (c/‖µf‖∞)µf . By
Proposition 8.1, the coefficient µf is invariant with respect to Γ(Ω), and thus so
is ν. By the measurable Riemann mapping theorem (Theorem 7.6), there is a

quasiconformal mapping h of Ĉ with µh = ν and h conformal on Ω. Again by
Proposition 8.1, we have that hmaps Ω onto another circle domain and it conjugates
the Schottky groups Γ(Ω) and Γ(h(Ω)).

Now, again by Theorem 7.7, the restriction of h to Ω has a unique K-quasi-

conformal extension h̃ to the whole sphere that also conjugates Γ(Ω) and Γ(h(Ω)).

By uniqueness, it follows that h = h̃ everywhere on Ĉ. But this contradicts the fact
that h is not K-quasiconformal, since ‖µh‖∞ = ‖ν‖∞ = c > (K − 1)/(K + 1). �

Remark 8.2. The above proof relies on the fact that the quasiconformal dilatation
K in Theorem 7.7 is uniform, in the sense that it does not depend on the conformal
map. We mention though that in order to prove that Ω is rigid, it actually suffices
to prove that every conformal map of Ω onto another circle domain extends to
a quasiconformal mapping of the whole sphere (regardless of the quasiconformal
dilatation). This follows from [33, Theorem 5].
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9. Further remarks on the rigidity conjecture

Recall from the introduction that the rigidity conjecture states that a circle
domain Ω is conformally rigid if and only if its boundary is conformally removable.
If there are only point boundary components, then the rigidity of Ω clearly implies
the removability of ∂Ω. Whether the converse holds remains unknown even in this
special case. The goal of this section is to investigate the properties of a possible
counterexample.

Suppose that Ω is a circle domain having only point boundary components and
assume that ∂Ω is removable but Ω is not rigid. Then there exists a non-Möbius
conformal map f : Ω → Ω∗ with f(∞) = ∞ ∈ Ω∗, where Ω∗ is another circle
domain. In particular, the domain Ω∗ is also non-rigid.

Now, we note that ∂Ω∗ necessarily contains at least one circle. Indeed, if not,
then f would be a conformal map between the complements of two totally discon-

nected compact sets and thus would extend to a homeomorphism of Ĉ by Lemma
3.3. But then f would be a Möbius transformation, by the removability of ∂Ω.

We mention that in [8, Theorem 4.1], based on results of Ahlfors and Beurling
[1], Gehring and Martio construct a circle domain Ω having only point boundary
components and a conformal map of Ω onto another circle domain Ω∗ having exactly
one boundary circle. In their example, however, the boundary of Ω has positive
area and hence is not removable. The question is whether one can construct such
an example but with removable boundary.

The following result states that if ∂Ω is removable, then ∂Ω∗ must in fact contain
a lot of circles.

Theorem 9.1. Suppose that f : Ω → Ω∗ is a non-Möbius conformal map between
two circle domains with f(∞) = ∞ ∈ Ω∗, and assume that Ω has only point
boundary components. If ∂Ω is removable, then Ω∗ has the property that every
point w0 ∈ ∂Ω∗ that is not a point boundary component is the accumulation point
of an infinite sequence of distinct circles in ∂Ω∗.

A circle domain Ω∗ with this property is called a Sierpiński-type circle domain.
See Figure 1. The proof of Theorem 9.1 is closely related to the notion of local
removability.

Definition 9.2. A compact set E ⊂ C is locally conformally removable if for any
open set U , every homeomorphism on U that is conformal on U \ E is actually
conformal on the whole open set U .

Note that if E is conformally removable, then for any open set U with E ⊂ U ,
every homeomorphism on U that is conformal on U \ E is actually conformal ev-
erywhere on U (see [33, Proposition 11]). The main difference here is that E is not
assumed to be contained in U ; in particular, the set E may intersect ∂U . Clearly,
local removability implies removability. Whether the converse holds remains un-
known. We state this as a conjecture; see also [3, Question 4].

Conjecture 9.3. A compact set is conformally removable if and only if it is locally
conformally removable.

Conjecture 9.3, if true, would imply that the union of two conformally removable
sets is also conformally removable, which is an open problem. In [33], the conjecture
was shown to hold for various sets, such as quasiarcs and totally disconnected
compact sets.
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Figure 1. A Sierpiński-type circle domain.

We now proceed with the proof of Theorem 9.1.

Proof. Let f : Ω → Ω∗ be a non-Möbius conformal map between two circle domains
with f(∞) = ∞ ∈ Ω∗, where ∂Ω is a totally disconnected removable compact set.

Suppose for a contradiction that there exists a complex number w0 ∈ ∂Ω∗ be-
longing to a boundary circle γ∗ and an open set V containing w0 that is disjoint
from all the other circles in ∂Ω∗. Shrinking V if necessary, we can assume that
V is a disk centered at w0 sufficiently small so that it does not contain γ∗. Also,
let z0 ∈ ∂Ω be the point corresponding to γ∗ under f , i.e., f∗({z0}) = γ∗; see
Proposition 3.1.

Now, let b∗ be a component of ∂Ω∗ contained in V . Note that b∗ is a single
point, and denote by b the point component of ∂Ω corresponding to b∗ under f ,
i.e., f∗(b) = b∗. By (PT1) of Section 3, for each ε > 0, we can find a Jordan curve γ
in B(b, ε)∩Ω whose bounded complementary component U1 contains b. Then f(γ)
is a Jordan curve in Ω∗ whose bounded complementary component V1 contains b∗,
by Lemma 3.2. Moreover, the curve f(γ) is contained in V provided ε is small
enough. Now, note that the sets E := U1 ∩ ∂Ω and F := V1 ∩ ∂Ω∗ are compact and
totally disconnected, and that f : U1 \ E → V1 \ F is conformal. It follows that f
extends to a homeomorphism of U1 onto V1; see Lemma 3.3. But E is removable,
as a compact subset of the removable set ∂Ω. We thus obtain from the remark after
Definition 9.2 that f extends to be conformal on U1, a neighborhood of b.

Summarizing, we have proved that f−1 extends to be conformal in a neighbor-
hood of every point b∗ ∈ V ∩ ∂Ω∗. It follows that the map f−1 has a conformal
extension to the open set V \D∗, where D∗ is the closed disk bounded by the circle
γ∗. Moreover, we have that f−1(wn) converges to z0 whenever wn is a sequence in
V \D∗ accumulating at the circular arc γ∗ ∩ V . This is clearly impossible, by the
Schwarz reflection principle for example, and we get a contradiction. �

Theorem 9.1 shows the importance of studying the rigidity of Sierpiński-type
circle domains. It is worth mentioning that such domains also appear naturally in
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another conjecture by He and Schramm on the removability of the boundaries of
circle domains.

Conjecture 9.4 (Removability conjecture [10]). Let Ω be a circle domain. If every
Cantor set contained in ∂Ω is conformally removable, then ∂Ω is removable.

The related question whether a non-removable curve contains a non-removable
Cantor set was asked by Bishop in [3, Question 4].

In [33], Conjecture 9.4 was shown to hold whenever the set of accumulation points
of circles is not too large, in some precise sense. Sierpiński-type circle domains are
therefore good candidates for a counterexample.

Finally, we conclude by mentioning that it is possible to construct a Sierpiński-
type circle domain Ω such that

(1) ∂Ω does not have σ-finite length,
(2) Ω is a John domain.

In particular, this gives examples of rigid circle domains (by Theorem 1.6) for which
the rigidity result from [10] does not apply.
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