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Abstract. We describe the variation of the Minkowski, packing and
Hausdorff dimensions of a set moving under a holomorphic motion, as
well as the variation of its area. Our method provides a new, unified ap-
proach to various celebrated theorems about quasiconformal mappings,
including the work of Astala on the distortion of area and dimension un-
der quasiconformal mappings and the work of Smirnov on the dimension
of quasicircles.

1. Introduction

In what follows, we write D,C and Ĉ for the open unit disk, the complex
plane and the Riemann sphere, respectively.

Definition 1.1. Let A be a subset of Ĉ. A holomorphic motion of A is a

map f : D×A→ Ĉ such that:

(i) for each fixed z ∈ A, the map λ 7→ f(λ, z) is holomorphic on D;
(ii) for each fixed λ ∈ D, the map z 7→ f(λ, z) is injective on A;
(iii) for all z ∈ A, we have f(0, z) = z.

We write fλ(z) := f(λ, z) and Aλ := fλ(A). We sometimes abuse terminol-
ogy and call the set-valued map λ 7→ Aλ a holomorphic motion of A.

Holomorphic motions were introduced by Mañé, Sad and Sullivan [15].
They established the so-called λ-lemma, which says that every holomorphic

motion f : D × A → Ĉ has an extension to a holomorphic motion F :

D × A → Ĉ, and that F is jointly continuous in (λ, z). They exploited
this result to describe the variation of Julia sets of holomorphic families of
hyperbolic rational maps. Holomorphic motions have since been applied in
various other areas of dynamical systems, notably in describing the variation
of limit sets of Kleinian groups, see e.g. [2, §12.2.1].
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Consider the following problem. Let λ 7→ Aλ be a holomorphic motion
such that Aλ ⊂ C for all λ ∈ D. What sort of functions are λ 7→ dim(Aλ)
and λ 7→ |Aλ|? Here |·| denotes the area measure (two-dimensional Lebesgue
measure) and dim(·) can denote any reasonable notion of dimension. Various
aspects of this problem have been treated in the literature, see for example
[1, 3, 4, 7, 8, 11, 14, 17, 18, 19, 21, 23]. We shall discuss some of these
contributions in more detail later.

In this article, we shall be mainly interested in three notions of dimension,
namely the Minkowski, packing and Hausdorff dimensions. To state our
results, it is convenient to introduce another definition.

Definition 1.2. LetD be a domain in C. A positive function u : D → [0,∞)
is called inf-harmonic if there exists a family H of harmonic functions on D
such that u(λ) = infh∈H h(λ) for all λ ∈ D.

In Theorems 1.3–1.6, we consider a holomorphic motion f : D × A → C
of a subset A of C, and write Aλ := fλ(A).

Our first result describes the variation of the Minkowski dimension, or
more precisely the upper Minkowski dimension dimM , of a bounded set
moving under a holomorphic motion.

Theorem 1.3. Let λ 7→ Aλ be a holomorphic motion of a bounded subset
A of C. Then Aλ is bounded for all λ ∈ D, and either dimM (Aλ) = 0 for
all λ ∈ D, or λ 7→ 1/dimM (Aλ) is an inf-harmonic function on D.

From this theorem, we deduce an analogous result for the packing dimen-
sion dimP .

Theorem 1.4. Let λ 7→ Aλ be a holomorphic motion of a subset A of
C. Then either dimP (Aλ) = 0 for all λ ∈ D, or λ 7→ 1/dimP (Aλ) is an
inf-harmonic function on D.

From these theorems, we obtain the following corollary.

Corollary 1.5. Under the respective assumptions of Theorems 1.3 and 1.4,
dimM (Aλ) and dimP (Aλ) are continuous, logarithmically subharmonic func-
tions of λ ∈ D (and hence also subharmonic on D). In particular, if either
these functions attains a maximum on D, then it is constant.

Proof. As we shall see, an inf-harmonic function is a continuous superhar-
monic function. Using Jensen’s inequality, it is easy to see that, if 1/v is a
positive superharmonic function, then log v is a subharmonic function, and
hence also v. The last part of the corollary is a consequence of the maximum
principle for subharmonic functions. �

For the Hausdorff dimension dimH , there is a result similar to Theo-
rems 1.3 and 1.4, but with a weaker conclusion.

Theorem 1.6. Let λ 7→ Aλ be a holomorphic motion of a subset A of C.
Then either dimH(Aλ) = 0 for all λ ∈ D, or dimH(Aλ) > 0 for all λ ∈ D.
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In the latter case, λ 7→ (1/dimH(Aλ)− 1/2) is the supremum of a family of
inf-harmonic functions on D.

The nature of the conclusion in Theorem 1.6 does not permit us to deduce
that log dimH(Aλ) or dimH(Aλ) is a subharmonic function of λ ∈ D. We
shall return to this problem at the end of the article.

Our next theorem is a sort of converse result.

Theorem 1.7. Let d : D→ (0, 2] be a function such that 1/d is inf-harmonic
on D. Then there exists a holomorphic motion f : D × A → C of a com-
pact subset A of C such that, setting Aλ := fλ(A), we have dimP (Aλ) =
dimH(Aλ) = d(λ) for all λ ∈ D.

We remark that Theorems 1.4 and 1.7 together yield a complete charac-
terization of the variation of the packing dimension of a set moving under a
holomorphic motion.

The holomorphic motions that arise from Julia sets of holomorphic fam-
ilies of hyperbolic rational maps (as considered in [15]) have the additional
property that their Hausdorff and packing dimensions vary as real-analytic
functions of λ. This is a special case of a result of Ruelle [21]. (Ruelle stated
his theorem for Hausdorff dimension, but it coincides with packing dimen-
sion in this case.) For general holomorphic motions, it is known that the
Hausdorff and packing dimensions need not be real-analytic (see e.g. [3]).
The following corollary of Theorem 1.7 shows that in fact they may have
the same lack of smoothness as an arbitrary concave function.

Corollary 1.8. Given a concave function ψ : D → [0,∞), there exists a
holomorphic motion f : D × A → C of a compact subset A of C such that,
setting Aλ := fλ(A), we have

dimH(Aλ) = dimP (Aλ) =
2

1 + ψ(λ)
(λ ∈ D).

Proof. Every positive concave function on D is inf-harmonic, since it is the
lower envelope of a family of affine functions λ 7→ aRe(λ)+b Im(λ)+c, each
of which is harmonic on D. Thus the map λ 7→ 1

2(1 + ψ(λ)) is inf-harmonic
on D. Also, it is clearly bounded below by 1/2, so its reciprocal takes values
in (0, 2]. The result therefore follows from Theorem 1.7. �

We now turn to the discussion of the variation of the area of a set A ⊂ C
moving under a holomorphic motion f : D × C → C. As before, for λ ∈ D,
we write fλ(z) := f(λ, z) and Aλ := fλ(A). Then each fλ : C → C is
quasiconformal and we denote its complex dilatation by µfλ (see §3 for
the definitions). Our next result gives a partial description of the function
λ 7→ |Aλ|, where | · | denotes area measure.

Theorem 1.9. Suppose that there exists a compact subset ∆ of C such that,
for each λ ∈ D, the map fλ is conformal on C \ ∆ and fλ(z) = z + O(1)
near ∞. Let A be a Borel subset of ∆ such that |A| > 0.
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(i) If µfλ = 0 a.e. on A, then λ 7→ log(πc(∆)2/|Aλ|) is an inf-harmonic
function on D, where c(∆) denotes the logarithmic capacity of ∆.

(ii) If µfλ = 0 a.e. on C \A, then λ 7→ |Aλ| is an inf-harmonic function
on D.

Note that if |A| = 0, then |Aλ| = 0 for all λ ∈ D, because quasiconformal
mappings preserve zero area.

Our approach based on inf-harmonic functions also permits us to present
a unified treatment of several celebrated theorems about the distortion of
area and dimension under quasiconformal maps.

We emphasize here that prior works on the distortion of dimension under
quasiconformal mappings relied on some of their more involved analytic
properties, such as higher order integrability of the Jacobian. Our approach,
on the other hand, only requires the fact that quasiconformal mappings
satisfy a “weak” quasisymmetry property, as stated in Corollary 3.7.

For instance, a simple application of the Harnack inequality allows us to
obtain the following two results. In Theorem 1.10, dim denotes any one
of dimP ,dimH or dimM . (In the case of dimM , we also suppose that A is
bounded.)

Theorem 1.10. Let F : C → C be a k-quasiconformal homeomorphism,
and let A be a subset of C such that dim(A) > 0. Then

1

K

( 1

dimA
− 1

2

)
≤
( 1

dimF (A)
− 1

2

)
≤ K

( 1

dimA
− 1

2

)
,

where K := (1 + k)/(1− k).

For the Hausdorff dimension, the above estimate was first suggested by
Gehring and Väisälä [11] and finally proved by Astala [1, Theorem 1.4].
For packing dimension it is a special case of a result of Kaufmann [14,
Theorem 4].

Theorem 1.11. Let F : C → C be a k-quasiconformal homeomorphism
which is conformal on C\∆, where ∆ is a compact set of logarithmic capacity
at most 1, and such that F (z) = z + o(1) near ∞. Let A be a Borel subset
of ∆.

(i) If µF = 0 a.e. on A, then

|F (A)| ≤ π1−1/K |A|1/K .

(ii) If µF = 0 a.e. on C \A, then

|F (A)| ≤ K|A|.

(iii) Hence, in general,

|F (A)| ≤ Kπ1−1/K |A|1/K .

Here again K = (1 + k)/(1− k).
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Theorem 1.11 is a sharpened form of a result of Astala [1, Theorem 1]
due to Eremenko and Hamilton [8, Theorem 1].

We also show how the proof of Theorem 1.6 can be adapted to obtain
the following upper bound for the Hausdorff dimension of quasicircles due
to Smirnov [23].

Theorem 1.12. If Γ is a k-quasicircle, then dimH(Γ) ≤ 1 + k2.

Finally, we obtain a result on the distortion of dimension under quasi-
symmetric maps. For the Hausdorff dimension dimH , it was proved by
Prause and Smirnov, see the main result of [18] and also [17, Theorem 3.1].
In the theorem below, dim denotes one of dimM or dimP . In the case of
dimM , we also assume that A is bounded.

Theorem 1.13. Let g : R→ R be a k-quasisymmetric map, where k ∈ [0, 1).
Then, given a set A ⊂ R with dim(A) = δ, 0 < δ ≤ 1, we have

∆(δ, k) ≤ dim(g(A)) ≤ ∆∗(δ, k).

Here

∆(δ, k) := 1−
(
k + l

1 + kl

)2

where l :=
√

1− δ, and ∆∗(δ, k) is the inverse

∆∗(δ, k) := ∆(δ,−min(k,
√

1− δ)).

In particular, if dimA = δ = 1, then l = 0 and ∆(δ, k) = 1− k2, whence

dim(g(A)) ≥ 1− k2.

The remainder of the paper is organized as follows. We review the no-
tions of Hausdorff, packing and Minkowski dimensions in §2. In §3 we discuss
holomorphic motions in more detail, in particular their relation to quasicon-
formal maps. The basic properties of inf-harmonic functions that we need
are developed in §4. Our main results, Theorems 1.3, 1.4, 1.6, 1.7 and 1.9,
are proved in §§5–9. The applications to quasiconformal mappings, namely
Theorems 1.10, 1.11, 1.12 and 1.13, are treated in §10. We conclude in §11
with an open problem.

2. Notions of dimension

In this section we present a very brief review of some basic notions of
dimension, introducing the notation, and concentrating on the aspects that
will be useful to us later. Our account is based on the books of Bishop–Peres
[6] and Falconer [9].
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2.1. Hausdorff dimension. We begin with the definition. Let A ⊂ C. For
s ≥ 0 and δ > 0, define

Hsδ(A) := inf
{ ∞∑
j=1

diam(Aj)
s
}
,

where the infimum is taken over all countable covers {Aj} of A by sets of
diameter at most δ. Since Hsδ(A) increases as δ decreases, the limit

Hs(A) := lim
δ→0
Hsδ(A)

exists, possibly 0 or ∞. The set function Hs(·) is an outer measure on C,
called the s-dimensional Hausdorff measure. The Hausdorff dimension of A
is defined as the unique real number dimH(A) ∈ [0, 2] such that

Hs(A) =

{
∞, s < dimH(A),

0, s > dimH(A).

We shall need a slight variant of this construction. A dyadic square is a
subset of C of the form Q = [m2−k, (m+ 1)2−k)× [n2−k, (n+ 1)2−k), where
k,m, n are integers (possibly negative). Define

H̃sδ(A) := inf
{ ∞∑
j=1

diam(Qj)
s
}
,

where now the infimum is taken merely over countable covers {Qj} of A by
dyadic squares of diameter at most δ. As before, we also set

H̃s(A) := lim
δ→0
H̃sδ(A).

Clearly we have H̃sδ(A) ≥ Hsδ(A) for all δ, and hence H̃s(A) ≥ Hs(A). Also,
it is not hard to see that any bounded subset of C can be covered by 9 dyadic

squares of smaller diameter, from which it follows that H̃sδ(A) ≤ 9Hsδ(A) for

all δ, and hence H̃s(A) ≤ 9Hs(A). In particular, we deduce the following
result.

Proposition 2.1. With the above notation, we have

H̃s(A) =

{
∞, s < dimH(A),

0, s > dimH(A).

Dyadic squares have the property that any two of them are either nested

or disjoint. Thus the sets Qj in the definition of H̃sδ(A) may be taken to be
disjoint. This will be useful for us later. For more on this, see [6, §1.3, p.11].

We conclude by noting that Hausdorff dimension is countably stable, i.e.,
for any sequence of sets (Aj) we have dimH(∪j≥1Aj) = supj≥1 dimH(Aj)
(see e.g. [9, p.49]).
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2.2. Packing dimension. The notion of packing dimension is in some sense
dual to that of Hausdorff dimension. It was introduced by Tricot in [25].

Once again, we begin with the definition. Let A ⊂ C. For s ≥ 0 and
δ > 0, define

Psδ (A) := sup
{ n∑
j=1

diam(Dj)
s
}
,

where the supremum is taken over all finite sets of disjoint disks {Dj} with
centres in A and of diameters at most δ. Since P sδ (A) decreases as δ de-
creases, the limit

Ps0(A) := lim
δ→0
Psδ (A)

exists, possibly 0 or ∞. This is not yet an outer measure, because it is not
countably subadditive. It is sometimes called the s-dimensional pre-packing
measure of A. We modify it to make it an outer measure, defining the
s-dimensional packing measure of A by

Ps(A) := inf
{∑
j≥1

Ps0(Aj) : A = ∪j≥1Aj

}
,

where the infimum is taken over all countable covers of A by subsets (Aj)j≥1.
The packing dimension of A is then defined as the unique real number
dimP (A) ∈ [0, 2] such that

Ps(A) =

{
∞, s < dimP (A),

0, s > dimP (A).

As in the case of Hausdorff dimension, the packing dimension is countably
stable: dimP (∪j≥1Aj) = supj≥1 dimP (Aj). Also, we always have

dimH(A) ≤ dimP (A),

and the inequality may be strict.

2.3. Minkowski dimension. Let A be a bounded subset of C. Given
δ > 0, we denote by Nδ(A) the smallest number of sets of diameter at
most δ needed to cover A. The upper and lower Minkowski dimensions of
A are respectively defined by

dimM (A) := lim sup
δ→0

logNδ(A)

log(1/δ)
and dimM (A) := lim inf

δ→0

logNδ(A)

log(1/δ)
.

Of course we always have dimM (A) ≤ dimM (A). The inequality may be
strict. If equality holds, then we speak simply of the Minkowski dimension
of A, denoted dimM (A). It is also called the box-counting dimension of A.

The Minkowski dimension has the virtue of simplicity, but it also suffers
from the drawback that, unlike the Hausdorff and packing dimensions, it is
not countably stable, i.e., it can happen that dimM (∪jAj) > supj dimM (Aj).
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There is a useful relationship between upper Minkowski dimension and
the pre-packing measure Ps0 introduced in the previous subsection. The
following result is due to Tricot [25, Corollary 2].

Proposition 2.2. If A is a bounded subset of C, then

Ps0(A) =

{
∞, s < dimM (A),

0, s > dimM (A).

Using this result, we can express the packing dimension in terms of the
upper Minkowski dimension. The following theorem is again due to Tricot
[25, Proposition 2], see also [6, Theorem 2.7.1].

Proposition 2.3. If A is a subset of C, then

dimP (A) = inf
{

sup
j≥1

dimM (Aj) : A = ∪j≥1Aj

}
,

where the infimum is taken over all countable covers of A by bounded subsets
(Aj).

From this result, it is obvious that, for every bounded set A, we have

dimP (A) ≤ dimM (A).

In general the inequality can be strict. The books [6] and [9] both contain
a discussion of conditions under which equality holds.

2.4. Similarity dimension. There is one further notion of dimension that
will prove useful in what follows. It applies to a specific example.

Consider a finite system of contractive similarities

γj(z) = ajz + bj (j = 1, . . . , n),

where a1, . . . , an, b1, . . . , bn ∈ C and |aj | < 1 for all j. In this situation, there
is a unique compact subset L of C such that L = ∪nj=1γj(L), called the limit

set of the iterated function system {γ1, . . . , γn}.
The system {γ1, . . . , γn} is said to satisfy the open set condition if there

exists a non-empty open subset U of C such that γj(U) ⊂ U for all j
and γi(U) ∩ γj(U) = ∅ whenever i 6= j. The following result is due to
Hutchinson [12], generalizing an earlier result of Moran [16], see also [9,
Theorem 9.3] or [6, Theorem 2.2.2].

Theorem 2.4. If the system {γ1, . . . , γn} satisfies the open set condition,
then the Hausdorff and packing dimensions of its limit set L are given by
dimH(L) = dimP (L) = s, where s is the unique solution of the equation

n∑
j=1

|aj |s = 1.

The number s (with or without the open set condition) is called the
similarity dimension of the system.
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3. Holomorphic motions and quasiconformal maps

Holomorphic motions were defined in Definition 1.1. As was mentioned
in the introduction, they were introduced in [15] by Mañé, Sad and Sulli-
van, who also established the λ-lemma. Their result was later improved by
Slodkowski in [22], confirming a conjecture of Sullivan and Thurston [24].
Slodkowski’s result is often called the extended λ-lemma. There are now
several proofs; another one can be found in [2, §12].

Theorem 3.1 (Extended λ-lemma). A holomorphic motion f : D×A→ C
has an extension to a holomorphic motion F : D× C→ C. The function F
is jointly continuous on D× C.

As was already remarked in [15], holomorphic motions are closely related
to quasiconformal maps. We now define this term and state some results
that will be needed in the sequel. Our treatment follows that in [2].

Definition 3.2. Let Ω,Ω′ be plane domains. A homeomorphism f : Ω→ Ω′

is called quasiconformal if:

(i) f is orientation-preserving;
(ii) its distributional Wirtinger derivatives ∂f/∂z and ∂f/∂z both be-

long to L2
loc(Ω), and

(iii) f satisfies the Beltrami equation:

∂f

∂z
= µf

∂f

∂z
a.e. on Ω,

where µf is a measurable function on Ω such that ‖µf‖∞ < 1.

The function µf is called the Beltrami coefficient or complex dilatation of f .
We shall say that the mapping f is k-quasiconformal if ‖µf‖∞ ≤ k.

Remark. Many authors (including those of [2]) use the term K-quasicon-
formal to mean k-quasiconformal in our sense with K = (1 + k)/(1− k).

We shall need the following fundamental result on the existence and
uniqueness of solutions to the Beltrami equation [2, Theorem 5.3.4].

Theorem 3.3 (Measurable Riemann mapping theorem). Let µ be a mea-
surable function on C with ‖µ‖∞ < 1. Then there exists a unique quasi-
conformal mapping f : C→ C fixing 0 and 1 with µf = µ a.e. on C.

It is well known that solutions of the Beltrami equation depend holo-
morphically on the parameter µ [2, Corollary 5.7.5]. Combined with [2,
Theorem 12.3.2], this is the key to the following characterization of holo-
morphic motions.

Theorem 3.4. Let f : D×C→ C be a function. The following statements
are equivalent:

(i) The map f is a holomorphic motion.
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(ii) For each λ ∈ D, the map fλ : C→ C is quasiconformal with Beltrami
coefficient µλ satisfying ‖µλ‖∞ ≤ |λ|. Moreover, the map f0 is the
identity, and the L∞(C)-valued map λ 7→ µλ is holomorphic on D.

These results can be used to show that every quasiconformal homeomor-
phism of C can be embedded as part of a holomorphic motion [2, Theo-
rem 12.5.3].

Theorem 3.5. If F : C → C is a k-quasiconformal homeomorphism, then
there exists a holomorphic motion f : D× C→ C such that fk = F .

Quasiconformal maps exhibit numerous interesting properties. An im-
portant one for us is the fact that quasiconformal homeomorphisms of C
are quasisymmetric in the sense described in the next theorem [2, Theo-
rem 3.5.3].

Theorem 3.6. Given k ∈ [0, 1), there exists an increasing homeomorphism
η : [0,∞) → [0,∞) such that every k-quasiconformal map f : C → C
satisfies

(3.1)
|f(z0)− f(z1)|
|f(z0)− f(z2)|

≤ η
( |z0 − z1|
|z0 − z2|

)
(z0, z1, z2 ∈ C).

We shall exploit this result via the following simple corollary.

Corollary 3.7. Given k ∈ [0, 1), there exist constants δ, δ′ > 0 such that
every k-quasiconformal homeomorphism f : C → C has the following prop-
erties:

(i) If z0 ∈ C and D is an open disk with centre z0, then f(D) contains
the open disk with centre f(z0) and radius δ diam f(D).

(ii) If z0 ∈ C and Q is an open square with centre z0, then f(Q) contains
the open disk with centre f(z0) and radius δ′ diam f(Q).

Proof. Let η be the function associated to k by Theorem 3.6. In the case
of the square, if z1, z2 ∈ ∂Q, then |z0 − z1|/|z0 − z2| ≤

√
2, so by (3.1) we

have |f(z0)− f(z1)|/|f(z0)− f(z2)| ≤ η(
√

2). It follows that (ii) holds with
δ′ = 1/(2η(

√
2)). The proof of (i) is similar, now with δ = 1/(2η(1)). �

4. Inf-harmonic functions

Recall from Definition 1.2 that a function u : D → [0,∞) defined on
a plane domain D is inf-harmonic if it is the lower envelope of a family
of harmonic functions. It is inherent in the definition that u is positive,
so the harmonic functions are positive too. This has the consequence that
inf-harmonic functions inherit several of the good properties of positive har-
monic functions.

We begin by showing that inf-harmonic functions satisfy Harnack’s in-
equality. Recall that, given λ1, λ2 ∈ D, there exists τ > 0 such that, for all
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positive harmonic functions h on D

1

τ
≤ h(λ1)

h(λ2)
≤ τ.

The smallest such τ is called the Harnack distance between λ1, λ2, denoted
τD(λ1, λ2). For example, τD(0, λ) = (1 + |λ|)/(1− |λ|) for λ ∈ D.

Proposition 4.1. Let u be an inf-harmonic function on a domain D, and
suppose that u 6≡ 0. Then u(λ) > 0 for all λ ∈ D and

(4.1)
1

τD(λ1, λ2)
≤ u(λ1)

u(λ2)
≤ τD(λ1, λ2) (λ1, λ2 ∈ D).

Proof. For each positive harmonic function h on D, we have

1

τD(λ1, λ2)
h(λ2) ≤ h(λ1) ≤ τD(λ1, λ2)h(λ2) (λ1, λ2 ∈ D).

Taking the infimum over all h such that h ≥ u, we obtain

1

τD(λ1, λ2)
u(λ2) ≤ u(λ1) ≤ τD(λ1, λ2)u(λ2) (λ1, λ2 ∈ D).

Since u 6≡ 0, this shows that u(λ) > 0 for all λ ∈ D, and (4.1) now follows
immediately. �

Corollary 4.2. If u is an inf-harmonic function on D, then it is a contin-
uous superharmonic function on D.

Proof. The continuity of u follows from Proposition 4.1, since τD is continu-
ous on D×D. As u is the infimum of harmonic functions, it clearly satisfies
the super-mean value property, so it is superharmonic on D. �

The next result is a normal-family property.

Proposition 4.3. Let (Dn)n≥1 be an increasing sequence of domains, and
let D := ∪n≥1Dn. For each n, let un be an inf-harmonic function on Dn.
Then either un → ∞ locally uniformly on D, or else some subsequence
unj → u locally uniformly on D, where u is inf-harmonic on D.

Proof. If there exists a point λ0 ∈ D such that un(λ0)→∞, then by Propo-
sition 4.1 the sequence un →∞ locally uniformly in each Dm and hence also
on D. Likewise if un(λ0) → 0, then un → 0 locally uniformly in D. Thus,
replacing (un) by a subsequence if necessary, we may assume that there ex-
ists λ0 ∈ D1 and M > 1 such that 1/M ≤ un(λ0) ≤ M for all n. In this
case, by Proposition 4.1 once more, the sequence (un) is equicontinuous on
each Dm, and by the Arzelà–Ascoli theorem, a subsequence (unj ) converges
locally uniformly on D to a finite-valued function u.

It remains to show that u is itself inf-harmonic on D. Relabelling, if
necessary, we can suppose that the whole sequence un converges to u locally
uniformly on D. Let λ0 ∈ D. Choose n0 so that λ0 ∈ Dn0 . For each n ≥ n0,
the function un is inf-harmonic on Dn, so there exists a (positive) harmonic
function hn on Dn such that hn ≥ un on Dn and hn(λ0) ≤ u(λ0) + 1/n. By
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a standard normal-family argument, a subsequence (hnj ) converges locally
uniformly on D to a function h that is harmonic on D. Clearly h ≥ u on
D and h(λ0) = u(λ0). Such an h exists for each choice of λ0 ∈ D, so we
conclude that u is indeed inf-harmonic on D. �

The following result lists some closure properties of the family of inf-
harmonic functions.

Proposition 4.4. (i) If u and v are inf-harmonic on D and if α, β ≥ 0,
then αu+ βv is inf-harmonic on D.

(ii) If u is inf-harmonic on D and h is harmonic on D, and if u ≥ h,
then u− h is inf-harmonic on D.

(iii) If (un)n≥1 are inf-harmonic functions on D, and if un → u pointwise
on D, then either u is inf-harmonic on D or u ≡ ∞.

(iv) If (Dn) is an increasing sequence of domains with ∪n≥1Dn = D, and
if u is a function on D such that u|Dn is inf-harmonic on Dn for
each n, then u is inf-harmonic on D.

(v) If V is a family of inf-harmonic functions on D and u := infv∈V v,
then u is inf-harmonic on D.

(vi) If V is an upward-directed family of inf-harmonic functions on D
(i.e., given v1, v2 ∈ V, there exists v3 ∈ V with v3 ≥ max{v1, v2}),
and if u := supv∈V v, then either u is inf-harmonic on D or u ≡ ∞.

Proof. (i),(ii) These are both obvious.
(iii) Assume that u 6≡ ∞. Then, by Proposition 4.3, a subsequence of the

(un) converges locally uniformly on D to an inf-harmonic function v. Since
the same subsequence converges pointwise to u, we must have v = u. Hence
u is inf-harmonic.

(iv) This follows by applying Proposition 4.3 with un := u|Dn .
(v) Again, this is obvious.
(vi) Assume that u 6≡ ∞. Then, by Proposition 4.1, u is finite-valued and

continuous on D. Let Λ = (λj) be a sequence that is dense in D. Using the
fact that V is upward-directed, we may construct an increasing sequence of
functions vn ∈ V such that vn(λj) ≥ u(λj)−1/n for all j ∈ {1, 2, . . . , n} and
all n ≥ 1. Then vn converges pointwise to a function v such that v ≤ u and
v = u on Λ. By part (iii) above, v is inf-harmonic on D. As v = u on the
dense subset Λ and both u, v are continuous, we have v = u on D. Thus u
is inf-harmonic on D, as asserted. �

We conclude this section with an implicit function theorem for inf-harm-
onic functions.

Theorem 4.5. Let D be a plane domain, and let aj : D → (0, 1) be a finite
or infinite sequence of functions such that log(1/aj) is inf-harmonic on D
for each j. Let c > 0, and define s : D → [0,∞] by

s(λ) := inf
{
α > 0 :

∑
j

aj(λ)α ≤ c
}

(λ ∈ D),
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where we interpret inf ∅ =∞. Then either s ≡ 0 or 1/s is an inf-harmonic
function on D.

It is perhaps worth emphasizing the case where there are only finitely
many functions aj . It then becomes a result closely linked to the notion of
similarity dimension defined in §2. It generalizes a result of Baribeau and
Roy [4, Theorem 1].

Corollary 4.6. Let a1, . . . , an : D → (0, 1) be functions such that log(1/aj)
is inf-harmonic on D for each j. Let c ∈ (0, n) and, for each λ ∈ D, let
s(λ) be the unique solution of the equation

n∑
j=1

aj(λ)s(λ) = c.

Then 1/s is an inf-harmonic function on D.

We shall deduce Theorem 4.5 from a more general abstract result. To
formulate this result, it is convenient to introduce some terminology.

Let X be a set and let U be a family of functions u : X → [0,∞). We
call U an inf-cone on X if it satisfies the following closure properties:

• if u, v ∈ U and α, β ≥ 0, then αu+ βv ∈ U ;
• if ∅ 6= V ⊂ U and u := infv∈V v, then u ∈ U .

By Proposition 4.4 parts (i) and (v), the set of inf-harmonic functions on a
domain D is an inf-cone on D.

The following result may be viewed as an abstract implicit function the-
orem for inf-cones.

Lemma 4.7. Let U be an inf-cone on X, let (uj)j≥1 be a sequence in U ,
and for each j let φj : [0,∞) → [0,∞) be a continuous, decreasing, convex
function. Define v : X → [0,∞] by

v(x) := sup
{
t > 0 :

∑
j≥1

φj(uj(x)/t) ≤ 1
}

(x ∈ X),

where we interpret sup ∅ = 0. Then v ∈ U or v ≡ ∞.

Proof. For each j, let Lj be the family of functions of the form L(y) :=
bL − aLy, such that aL ≥ 0, bL ∈ R and L ≤ φj . As φj is a continuous
decreasing convex function, we have φj = supL∈Lj L. Consequently, if x ∈ X
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and t > 0, then∑
j≥1

φj(uj(x)/t) ≤ 1

⇐⇒
n∑
j=1

φj(uj(x)/t) ≤ 1 (n ≥ 1)

⇐⇒
n∑
j=1

(bLj − aLjuj(x)/t) ≤ 1 (n ≥ 1, L1 ∈ L1, . . . , Ln ∈ Ln)

⇐⇒ t
( n∑
j=1

bLj − 1
)
≤

n∑
j=1

aLjuj(x) (n ≥ 1, L1 ∈ L1, . . . , Ln ∈ Ln).

There are now two possibilities. If
∑n

j=1 bLj ≤ 1 for all n and all choices of

(L1, . . . , Ln) ∈ L1 × · · · × Ln, then the above conditions are satisfied for all
t > 0 and all x ∈ X. In this case v ≡ ∞. In the other case, we have

v(x) = inf

{∑n
j=1 aLjuj(x)∑n
j=1 bLj − 1

}
(x ∈ X),

where the infimum is taken over all n ≥ 1 and all (L1, . . . , Ln) ∈ L1×· · ·×Ln
such that

∑n
j=1 bLj > 1. Hence v ∈ U in this case. �

Proof of Theorem 4.5. This result follows from Lemma 4.7 upon taking U
to be the set of inf-harmonic functions on D, and ψj(y) := (1/c) exp(−y)
for each j. �

5. Proof of Theorem 1.3

We have Aλ = fλ(A) = f(λ,A), where f : D × A → C is a holomorphic
motion. By Theorem 3.1, we may extend f to a holomorphic motion f :
D × C → C. We shall assume that f has been so extended. Since A is
bounded and f is continuous, it follows that Aλ is bounded for all λ ∈ D.

The following lemma establishes the link with inf-harmonic functions. We
recall that D(a, r) denotes the open disk with centre a and radius r, and
that diam(S) denotes the euclidean diameter of S.

Lemma 5.1. Let f : D × C → C be a holomorphic motion. Let B be a
bounded subset of C and let ρ ∈ (0, 1). Then M := diam f(D(0, ρ)×B) <∞.
If S is a subset of B, then the map λ 7→ log(M/ diam fλ(S)) is an inf-
harmonic function on D(0, ρ). Consequently, we have

(5.1)
ρ− |λ|
ρ+ |λ|

≤ log(M/ diam fλ(S))

log(M/ diamS)
≤ ρ+ |λ|
ρ− |λ|

(λ ∈ D(0, ρ)).

Proof. As f : D×C→ C is a continuous map and D(0, ρ)×B is a compact
subset of D×C, it follows that f(D(0, ρ)×B) is a compact subset of C. In
particular it has finite diameter, so M <∞.
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Given S ⊂ B, we have

log
( M

diam fλ(S)

)
= inf

{
log
( M

|fλ(z)− fλ(w)|

)
: z, w ∈ S, z 6= w

}
.

Fo each pair z, w ∈ S with z 6= w, the function λ 7→ log(M/|fλ(z)− fλ(w)|)
is positive and harmonic on D(0, ρ). Therefore λ 7→ log(M/ diam fλ(S)) is
inf-harmonic on D(0, ρ).

Finally, the inequality (5.1) is a direct consequence of Harnack’s inequality
for inf-harmonic functions, Proposition 4.1. �

The next lemma contains the heart of the proof of Theorem 1.3. We
recall that the upper Minkowski dimension dimM can be characterized using
Proposition 2.2.

Lemma 5.2. If dimM (A) > 0, then there exists an inf-harmonic function
u on D such that

u(0) = 1/dimM (A) and u(λ) ≥ 1/dimM (Aλ) (λ ∈ D).

Proof. Let ρ ∈ (0, 1). We shall carry out the proof on the disk D(0, ρ), and
then let ρ→ 1 at the very end.

Let (dn) be a sequence such that 0 < dn < dimM (A) and dn → dimM (A).
By Proposition 2.2, for each n there exists a finite set Dn of disjoint disks
with centres in A such that, as n→∞,

(5.2) max
D∈Dn

diam(D)→ 0 and
∑
D∈Dn

diam(D)dn →∞.

LetB be the union of all the disks in ∪n≥1Dn. This is a bounded set, so, by
Lemma 5.1, M := diam f(D(0, ρ)× B) <∞, and λ 7→ log(M/ diam fλ(D))
is inf-harmonic on D(0, ρ) for each D ∈ ∪nDn.

For each λ ∈ D(0, ρ), let sn(λ) be the unique solution of the equation∑
D∈Dn

(diam fλ(D)/M)sn(λ) =
∑
D∈Dn

(diamD/M)dn .

Clearly sn(0) = dn. Also, by the implicit function theorem, Corollary 4.6,
the function 1/sn is inf-harmonic on D(0, ρ). By Proposition 4.3, a subse-
quence of 1/sn (which, by relabelling, we may suppose to be the whole se-
quence) converges locally uniformly to an inf-harmonic function u onD(0, ρ).
Clearly we have u(0) = limn(1/dn) = 1/dimM (A). We shall show that
u(λ) ≥ 1/dimM (Aλ) for all λ ∈ D(0, ρ).

Fix λ ∈ D(0, ρ), and let c ∈ (0, 1/u(λ)). Then sn(λ) > c for all large
enough n, and so, for these n, we have∑

D∈Dn

(diam fλ(D)/M)c ≥
∑
D∈Dn

(diam fλ(D)/M)sn(λ)

=
∑
D∈Dn

(diamD/M)dn ,
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whence ∑
D∈Dn

(diam fλ(D))c ≥M c−dn
∑
D∈Dn

(diamD)dn .

For a given value of n, the sets {fλ(D) : D ∈ Dn} are disjoint, but they
are not disks. However, we can circumvent this difficulty by invoking the
theory of quasiconformal mappings. By Theorem 3.4, the map fλ is a ρ-
quasiconformal self-homeomorphism of C. Consequently, by Corollary 3.7(i),
there exists a δ > 0 such that, for each w ∈ C and each open disk D with
centre w, the set fλ(D) contains the open disk with centre fλ(w) and radius
δ diam fλ(D). In particular, for each D ∈ Dn, the set fλ(D) contains a disk
with centre in fλ(A) and diameter at least δ diam fλ(D). Denoting by D′n
the set of such disks, we obtain a finite set of disjoint disks D′ with centres
in Aλ and such that∑

D′∈D′
n

(diamD′)c ≥
∑
D∈Dn

(δ diam fλ(D))c ≥ δcM c−dn
∑
D∈Dn

(diamD)dn .

From (5.2), we have
∑

D∈Dn(diamD)dn →∞, whence it follows that

(5.3)
∑

D′∈D′
n

(diamD′)c →∞ (n→∞).

Also from (5.2), we have maxD∈Dn diam(D) → 0, which, together with the
inequality (5.1), implies that

(5.4) max
D′∈D′

n

diam(D′)→ 0 (n→∞).

Taken together, the limits (5.3) and (5.4) show that dimM (Aλ) ≥ c. As this
holds for each c ∈ (0, 1/u(λ)), we deduce that dimM (Aλ) ≥ 1/u(λ), in other
words, that u(λ) ≥ 1/dimM (Aλ), as desired.

The proof of the lemma is nearly complete, save for the fact that u is
defined only on D(0, ρ), not on D. To fix this, let us choose an increas-
ing sequence (ρm) in (0, 1) such that ρm → 1. For each m, the argument
above furnishes an inf-harmonic function um defined on D(0, ρm) such that
um(0) = 1/dimM (A) and um(λ) ≥ 1/dimM (Aλ) for all λ ∈ D(0, ρm). By
Proposition 4.3, a subsequence of (um) converges locally uniformly to an
inf-harmonic function u on D. Clearly we have u(0) = 1/dimM (A) and
u(λ) ≥ 1/dimM (Aλ) for all λ ∈ D. The proof is now complete. �

From here, it is a small step to establish the main result.

Proof of Theorem 1.3. It is enough to show that, for each λ0 ∈ D such that
dimM (Aλ0) > 0, there exists an inf-harmonic function u on D such that

(5.5) u(λ0) = 1/dimM (Aλ0) and u(λ) ≥ 1/dimM (Aλ) (λ ∈ D).

The special case λ0 = 0 has already been proved in Lemma 5.2. The general
case can be deduced from this as follows.
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Fix a Möbius automorphism φ of D such that φ(0) = λ0. Then f̃λ :=

fφ(λ) ◦ f−1
λ0

is a holomorphic motion mapping D× C into C. Also Ã := Aλ0
is a bounded subset of C, such that f̃λ(Ã) = Aφ(λ) for all λ ∈ D. Thus,

applying Lemma 5.2 with A, f replaced by the pair Ã, f̃ , we deduce that
there exists an inf-harmonic function v on D such that

v(0) = 1/dimM (Aφ(0)) and v(λ) ≥ 1/dimM (Aφ(λ)) (λ ∈ D).

Then u := v ◦ φ−1 is an inf-harmonic function on D satisfying (5.5). This
completes the proof of the theorem. �

6. Proof of Theorem 1.4

As in the previous section, we may suppose that Aλ = fλ(A) = f(λ,A),
where f : D× C→ C is a holomorphic motion.

We shall deduce Theorem 1.4 from Theorem 1.3, using the characteriza-
tion of packing dimension in terms of Minkowski dimension given in Propo-
sition 2.3. From that result, we have

dimP (A) = inf
{

sup
j≥1

dimM (Aj) : A = ∪j≥1Aj

}
,

where the infimum is taken over all countable covers of A by bounded sub-
sets (Aj). Since fλ is a bijection of A onto Aλ, it follows that,

dimP (Aλ) = inf
{

sup
j≥1

dimM (fλ(Aj)) : A = ∪j≥1Aj

}
(λ ∈ D),

and hence

(6.1)
1

dimP (Aλ)
= sup

{
inf
j≥1

1

dimM (fλ(Aj))
: A = ∪j≥1Aj

}
(λ ∈ D).

Let A = ∪j≥1Aj be a countable cover of A by bounded subsets of A. By

Theorem 1.3, for each j, either dimM (fλ(Aj)) ≡ 0 or λ 7→ 1/dimM (fλ(Aj))

is an inf-harmonic function on D. It follows that either dimM (fλ(Aj)) ≡ 0

for all j ≥ 1 or else λ 7→ infj≥1 1/dimM (fλ(Aj)) is an inf-harmonic function
on D. In the first case, (6.1) implies that dimP (Aλ) ≡ 0. In the second
case, the relation (6.1) expresses 1/ dimP (Aλ) as the supremum of a family
of inf-harmonic functions.

Ordinarily, the supremum of a family of inf-harmonic functions is no
longer inf-harmonic. However, this particular family is an upward-directed
set, in the sense of Proposition 4.4 (vi). Indeed, given any two countable
covers A = ∪iAi = ∪jBj of A by bounded sets, there is a third such cover,
namely A = ∪i,j(Ai ∩Bj), with the property that

sup
i,j

dimM (Ai ∩Bj) ≤ min
{

sup
i

dimM (Ai), sup
j

dimM (Bj)
}
,

which implies upward-directedness in (6.1). By Proposition 4.4 (vi), it fol-
lows that either dimP (Aλ) ≡ 0 or λ 7→ 1/ dimP (Aλ) is inf-harmonic on D.
This completes the proof of Theorem 1.4. �
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7. Proof of Theorem 1.6

The proof of Theorem 1.6 follows a similar pattern to that of Theorem 1.3,
presented in §5, except that, because Hausdorff dimension is defined in terms
of coverings rather than packings, some of the inequalities go in the other
direction. Unfortunately, this leads ultimately to a weaker result.

We have Aλ = fλ(A) = f(λ,A), where f : D × A → C is a holomorphic
motion. As before, we may extend f to a holomorphic motion f : D×C→ C,
and we shall assume that f has been so extended.

The core of the proof is contained in the following lemma.

Lemma 7.1. (i) If dimH(A) = 0, then dimH(Aλ) = 0 for all λ ∈ D.
(ii) If dimH(A) > 0, then there exists an inf-harmonic function u on D

such that

u(0) = 1/ dimH(A) and 1/2 ≤ u(λ) ≤ 1/ dimH(Aλ) (λ ∈ D).

Proof. If dimH(A) = 2, then we may simply take u ≡ 1/2. Henceforth, we
suppose that 0 ≤ dimH(A) < 2.

Let ρ ∈ (0, 1). We shall carry out the proof on the disk D(0, ρ), and then
let ρ→ 1 at the very end.

Let (dn) be a sequence such that dimH(A) < dn < 2 and dn → dimH(A).
By Proposition 2.1, for each n there exists a (countable) cover Qn of A by
disjoint dyadic squares such that, as n→∞,

(7.1) sup
Q∈Qn

diam(Q)→ 0 and
∑
Q∈Qn

diam(Q)dn → 0.

We can suppose that all the squares in ∪nQn meet A. Thus, if B is the
union of all the squares in ∪nQn, then B is a bounded set. By Lemma 5.1,
M := diam f(D(0, ρ) × B) < ∞, and λ 7→ log(M/diam fλ(Q)) is inf-
harmonic on D(0, ρ) for each Q ∈ ∪nQn.

Fix a constant C, to be chosen later (it will depend only on ρ), and, for
each λ ∈ D(0, ρ), set

sn(λ) := inf
{
α > 0 :

∑
Q∈Qn

(diam fλ(Q)

M

)α
≤ C

}
.

By the implicit function theorem, Theorem 4.5, either sn ≡ 0 or 1/sn is
inf-harmonic on D(0, ρ). By Proposition 4.3, a subsequence of (sn) (which,
by relabelling, we may suppose to be the whole sequence) converges locally
uniformly to s on D(0, ρ), where either s ≡ 0 or 1/s is inf-harmonic on
D(0, ρ).

From (7.1) we have we have sn(0) ≤ dn for all sufficiently large n, so

(7.2) s(0) = lim
n→∞

sn(0) ≤ lim
n→∞

dn = dimH(A).
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If α > s(λ) for some λ ∈ D(0, ρ), then α > sn(λ) for all large enough n,
so, for these n, ∑

Q∈Qn

diam fλ(Q)α ≤ CMα.

For each n, the family {fλ(Q) : Q ∈ Qn} is a cover of Aλ. Also, from (7.1)
and (5.1), we have supQ∈Qn diam fλ(Q) → 0 as n → ∞. It follows from
the definition of Hausdorff dimension that dimH(Aλ) ≤ α. As this holds for
each α > s(λ), we conclude that

(7.3) s(λ) ≥ dimH(Aλ) (λ ∈ D(0, ρ)).

Next we show that, if the constant C is chosen sufficiently large, then
we also have s(λ) ≤ 2 for all λ ∈ D(0, ρ). To achieve this, we once again
invoke the theory of quasiconformal mappings. By Theorem 3.4, the map
fλ is a ρ-quasiconformal self-homeomorphism of C. Consequently, by Corol-
lary 3.7 (ii), there exists a constant δ′ > 0, depending only on ρ, such that,
for each open square Q in C, the set fλ(Q) contains an open disk of radius
δ′ diam fλ(Q). In particular, for each n, the disjoint sets {fλ(Q) : Q ∈ Qn}
contain disjoint disks of radii δ′ diam fλ(Q). As these disks are all contained
within the set f(D(0, ρ)×B), which has diameter M , consideration of their
areas leads to the inequality∑

Q∈Qn

π(δ′ diam fλ(Q))2 ≤ πM2,

in other words, ∑
Q∈Qn

(diam(fλ(Q))

M

)2
≤ 1/δ′2.

This shows that, if C ≥ 1/δ′2, then sn(λ) ≤ 2 for all n, and consequently
s(λ) ≤ 2.

To summarize, we have shown that, if dimH(A) = 0, then dimH(Aλ) = 0
for all λ ∈ D(0, ρ) (combine (7.2) and (7.3)), and, if dimH(A) > 0, then
u := 1/s is an inf-harmonic function on D(0, ρ) such that

u(0) = 1/ dimH(A) and 1/2 ≤ u(λ) ≤ 1/ dimH(Aλ) (λ ∈ D(0, ρ)).

The proof of the lemma is nearly complete, except that u is defined only
on D(0, ρ), not on D. We fix this in exactly the same way as at the end of
the proof of Lemma 5.2. �

Remark. Part (i) of Lemma 7.1 could also have been proved using the well-
known fact that the quasiconformal image of a set of Hausdorff dimension
zero also has Hausdorff dimension zero.

Proof of Theorem 1.6. We claim that, for each ζ ∈ D, if dimH(Aζ) = 0,
then dimH(Aλ) = 0 for all λ ∈ D, and, if dimH(Aζ) > 0, then there exists
an inf-harmonic function uζ on D such that

uζ(ζ) = 1/ dimH(Aζ) and 1/2 ≤ uζ(λ) ≤ 1/ dimH(Aλ) (λ ∈ D).
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The special case ζ = 0 has been proved in Lemma 7.1, and the general case
is deduced from this just as in the proof of Theorem 1.3 at the end of §5.

Thus, either dimH(Aλ) = 0 for all λ ∈ D, or dimH(Aλ) > 0 for all λ ∈ D.
In the latter case, we have

1

dimH(Aλ)
− 1

2
= sup

ζ∈D
(uζ(λ)− 1/2) (λ ∈ D),

where the right-hand side is the supremum of a family of functions that are
inf-harmonic on D. �

8. Proof of Theorem 1.7

The essential idea of the proof is contained in the following lemma, which
is based on a construction in Astala’s paper [1].

Lemma 8.1. Let h : D → (0,∞) be a positive harmonic function, and let
n ≥ 10. Then there exists a holomorphic motion λ 7→ Eλ such that Eλ is a
compact subset of D for all λ ∈ D and

1

dimH(Eλ)
=

1

dimP (Eλ)
= h(λ) +

1

2
+

log 2

2 log n
(λ ∈ D).

Proof. As h is a positive harmonic function on D, there exists a holomorphic
function a : D→ D \ {0} such that

log |a(λ)| = −h(λ) log n (λ ∈ D).

Let D(w1, r), . . . , D(wn, r) be disjoint closed disks inside D, where r =
1/
√

2n. Such disks may be found if n ≥ 10. For j = 1, . . . , n and λ ∈ D,
define

γj,λ(z) := ra(λ)z + wj (z ∈ C).

Note that γj,λ(D) ⊂ D(wj , r) for each j = 1, . . . , n and each λ ∈ D.
Thus, for each λ ∈ D, the family {γj,λ : j = 1, . . . , n} generates an iterated
function system satisfying the open set condition. If we denote by Eλ its
limit set, then λ 7→ Eλ is a compact-valued holomorphic motion (see e.g. [4,
Theorem 4]) such that Eλ ⊂ ∪nj=1D(wj , r) ⊂ D for all λ ∈ D. Moreover, by a
special case of the Hutchinson–Moran formula Theorem 2.4, the Hausdorff
and packing dimensions of Eλ are given by dimH Eλ = dimP Eλ = s(λ),
where s(λ) is the solution of the equation

n(r|a(λ)|)s(λ) = 1.

Solving this equation, we obtain

1

s(λ)
= − log(r|a(λ)|)

log n
=

log(
√

2n) + h(λ) log n

log n
=

log 2

2 log n
+

1

2
+ h(λ).

This completes the proof. �

Lemma 8.2. Let D be a domain and let u be an inf-harmonic function
on D. Then there exists a sequence (hn)n≥1 of positive harmonic functions
on D such that, for every m ≥ 1, we have u = infn≥m hn on D.
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Proof. Let S be a countable dense subset of D, and let (λn)n≥1 be a sequence
in S that visits every point of S infinitely often. Since u is inf-harmonic
on D, for each n ≥ 1 there exists a positive harmonic function hn on D such
that hn ≥ u and hn(λn) < u(λn) + 1/n. Then, for each m ≥ 1, we have
u = infn≥m hn on S. Since S is dense in D and inf-harmonic functions are
automatically continuous, it follows that u = infn≥m hn on D. �

Proof of Theorem 1.7. Set u(λ) := 1/d(λ)− 1/2. Since 1/d is inf-harmonic
and 1/d ≥ 1/2, it follows that u is inf-harmonic as well. By Lemma 8.2,
there exists a sequence (hn)n≥1 of positive harmonic functions on D such
that u = infn≥m hn for every m ≥ 1.

By Lemma 8.1, for each n ≥ 10, there exists a compact-valued holomor-

phic motion λ 7→ E
(n)
λ in D such that

1

dimH(E
(n)
λ )

=
1

dimP (E
(n)
λ )

= hn(λ) +
1

2
+

log 2

2 log n
(λ ∈ D).

Fix a sequence of disjoint closed disks D(ζn, sn) in C such that ζn → 0 and
sn → 0, and define

Aλ :=
⋃
n≥10

(snE
(n)
λ + ζn) ∪ {0} (λ ∈ D).

Then λ 7→ Aλ is a union of holomorphic motions taking place in disjoint
disks, so it is itself a holomorphic motion. Moreover Aλ is a compact set for
each λ ∈ D. Finally, since both Hausdorff dimension and packing dimension
are countably stable, and these dimensions are unchanged under similarities,
we have

1

dimH(Aλ)
=

1

dimP (Aλ)
= inf

n≥10

(
1

dimP (E
(n)
λ )

)
= inf

n≥10

(
hn(λ) +

1

2
+

log 2

2 log n

)
= u(λ) +

1

2
=

1

d(λ)
.

In other words, dimH(Aλ) = dimP (Aλ) = d(λ) for all λ ∈ D. This completes
the proof. �

9. Proof of Theorem 1.9

In this section, we prove Theorem 1.9 on the variation of the area of a set
moving under a holomorphic motion. The proof of part (i) follows closely the
ideas of [8], as elaborated in [2, §13.1]. We first need the following lemmas.

Lemma 9.1. Let (Ω, ν) be a measure space and let a : Ω → (0,∞) be a
measurable function such that

∫
Ω a dν < ∞. Then, for every measurable
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function p : Ω→ (0,∞) such that
∫

Ω p dν = 1, we have

log
(∫

Ω
a dν

)
≥
∫

Ω
p log

(a
p

)
dν,

with equality if p = a/(
∫

Ω a dν).

Proof. The inequality follows from Jensen’s inequality applied to the concave
function log x and the probability space (Ω, p dν). The case of equality is
obvious. �

Lemma 9.2. Let D be a plane domain, let (Ω, ν) be a finite measure space,
and let h : D × Ω→ R be a measurable function such that:

• λ 7→ h(λ, ω) is harmonic on D, for each ω ∈ Ω;
• supK×Ω |h(λ, ω)| <∞ for each compact K ⊂ D.

Then the function H(λ) :=
∫

Ω h(λ, ω) dν(ω) is harmonic on D.

Proof. The function H is continuous on D, by the dominated convergence
theorem. Also it satisfies the mean-value property on D, by the harmonicity
of h(·, ω) and Fubini’s theorem. Therefore H is harmonic on D. �

Lemma 9.3. Let k ∈ (0, 1) and let R > 0. Let g, gn : C → C be k-
quasiconformal homeomorphisms such that

• µgn → µg a.e. on C,
• suppµgn ⊂ D(0, R) for each n ≥ 1,
• gn(z) = z + o(1) = g(z) as |z| → ∞ for each n ≥ 1.

Then

‖∂zgn − ∂zg‖L2(C) → 0 and ‖∂zgn − ∂zg‖L2(C) → 0.

Proof. The second limit holds by [2, Lemma 5.3.1]. The first limit is an
automatic consequence, since ‖∂zgn − ∂zg‖L2(C) = ‖∂zgn − ∂zg‖L2(C). This
is because the Beurling transform, which takes ∂zf to ∂zf , is a unitary
operator on L2(C) (see the discussion on [2, p.95]). �

Proof of Theorem 1.9. Let f : D×C→ C be a holomorphic motion. Suppose
that there exists a compact subset ∆ of C such that, for each λ ∈ D, the
map fλ is conformal on C \ ∆ and fλ(z) = z + O(1) near ∞. Let A be
a Borel subset of ∆ such that |A| > 0. We begin with some preliminary
remarks.

The first remark is that, in the normalization fλ(z) = z+O(1) near∞, we
may as well suppose that in fact fλ(z) = z+o(1) near∞. Indeed, it suffices
to consider the translated holomorphic motion f(λ, z)− a0(λ), where a0(λ)
is the constant coefficient in the Laurent expansion of fλ(z) near infinity.
Note that a0(λ) is holomorphic in D, as can be seen from the formula

a0(λ) =
1

2πi

∫
|z|=R

fλ(z)

z
dz,

valid for all R large enough so that ∆ ⊂ D(0, R).
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Next, we claim that there is a simple a priori bound on |Aλ|, namely

(9.1) |Aλ| ≤ πc(∆)2 (λ ∈ D).

Here c(∆) is the logarithmic capacity of ∆, see e.g. [20, Chapter 5] for the
definition. Indeed, since fλ is a conformal homeomorphism of C \ ∆ onto
C \ fλ(∆) satisfying fλ(z) = z + o(1) at infinity, the sets ∆ and fλ(∆) have
the same logarithmic capacity:

c(fλ(∆)) = c(∆) (λ ∈ D),

by [20, Theorem 5.2.3]. From the isoperimetric inequality for logarithmic
capacity ([20, Theorem 5.3.5]) we have |fλ(∆)| ≤ πc(fλ(∆))2, and it follows
that

|Aλ| = |fλ(A)| ≤ |fλ(∆)| ≤ πc(fλ(∆))2 = πc(∆)2,

as claimed.
We now turn to the proof of part (i) of the theorem. Suppose first that A

is compact and that there exists an open neighbourhood U of A such that
µfλ ≡ 0 on U for all λ ∈ D. Then each fλ is a conformal mapping on U , so
f ′λ(z) 6= 0 for all z ∈ U . By the standard Jacobian formula for area, we have

|Aλ| = |fλ(A)| =
∫
A
|f ′λ(z)|2 dm(z),

where dm denotes area measure on C. Using Lemma 9.1, we can write
log |Aλ| as

log |Aλ| = sup
p

{∫
A
p(z) log

( |f ′λ(z)|2

p(z)

)
dm(z)

}
,

where the supremum is taken over all continuous functions p : A → (0,∞)
such that

∫
A p dm = 1. By Lemma 9.2, each of the integrals is a harmonic

function of λ ∈ D. Therefore log(C/|Aλ|) is an inf-harmonic function on D
for each C ≥ supλ∈D |Aλ|, in particular for C = πc(∆)2, by (9.1).

Suppose now that A is merely Borel, but still that µfλ ≡ 0 on U for all
λ ∈ D. We have

log
(πc(∆)2

|Aλ|

)
= inf

F
log
(πc(∆)2

|Fλ|

)
(λ ∈ D),

where the infimum is taken over all compact subsets F of A. Each function
on the right-hand side is inf-harmonic on D, by what we have already proved.
Therefore the left-hand side is inf-harmonic on D as well.

Finally, suppose merely that µfλ = 0 a.e. on A for each λ ∈ D. Let Un be a
deceasing sequence of bounded open sets such that |Un\A| → 0. By Theorem
3.4, for each n there exists a holomorphic motion fn : D×C→ C such that,
for each λ ∈ D, we have µfn,λ = 1C\Unµfλ a.e. on C and fn,λ(z) = z + o(1)
near ∞. By Lemma 9.3, it follows that

‖∂zfn,λ − ∂zfλ‖L2(C) → 0 and ‖∂zfn,λ − ∂zfλ‖L2(C) → 0.
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Therefore ∫
A
|∂zfλ|2 dm = lim

n→∞

∫
A
|∂zfn,λ|2 dm = lim

n→∞
|fn,λ(A)|

and ∫
A
|∂zfλ|2 dm = lim

n→∞

∫
A
|∂zfn,λ|2 dm = 0.

Hence, using [2, formula (2.24)], we obtain

|fλ(A)| =
∫
A

(|∂zfλ|2 − |∂zfλ|2) dm = lim
n→∞

|fn,λ(A)|.

Thus

log
(πc(∆)2

|Aλ|

)
= lim

n→∞
log
( πc(∆)2

|fn,λ(A)|

)
(λ ∈ D).

By what we have already proved, the right-hand sides are inf-harmonic func-
tions of λ. It follows from Proposition 4.4 part (iii) that the left-hand side
is inf-harmonic on D as well. This completes the proof of part (i) of the
theorem.

We now turn to the proof of part (ii). Set R0 := supz∈∆ |z| and, for

R > R0, set ∆R := D(0, R) (so c(∆R) = R). By hypothesis µfλ = 0 a.e. on
∆R \ A. So, applying what we have proved in part (i) (with ∆ replaced by
∆R and A replaced by ∆R \A), we see that

λ 7→ log
( πR2

|fλ(∆R \A)|

)
is an inf-harmonic function on D. Now, fix λ ∈ D. Then |fλ(∆R \ A)| =
|fλ(∆R)| − |Aλ|, and by the area theorem from univalent function theory,

|fλ(∆R)| = πR2 − π
∑
n≥1

n|an(λ)|2R−2n,

where fλ(z) = z +
∑

n≥1 an(λ)z−n is the Laurent expansion of fλ near

infinity. In particular, |fλ(∆R)| = πR2 +O(R−2) as R→∞. Hence

log
( πR2

|fλ(∆R \A)|

)
= log

( πR2

πR2 − |Aλ|+O(R−2)

)
=
|Aλ|
πR2

+O(R−4) (R→∞).

It follows that

|Aλ| = lim
R→∞

πR2 log
( πR2

|fλ(∆R \A)|

)
(λ ∈ D).

By what we have shown earlier, the right-hand sides are inf-harmonic func-
tions of λ. It follows from Proposition 4.4 part (iii) that the left-hand side
is inf-harmonic on D as well. This completes the proof of part (ii) of the
theorem. �
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10. Applications to quasiconformal maps

In this section we show how our results lead to a unified approach to the
four theorems on quasiconformal distortion of area and dimension that were
stated at the end of the introduction.

10.1. Distortion of dimension by quasiconformal maps. In this sub-
section we establish Theorem 1.10, to the effect that, if F : C → C is a
k-quasiconformal homeomorphism and dimA > 0, then

(10.1)
1

K

( 1

dimA
− 1

2

)
≤
( 1

dimF (A)
− 1

2

)
≤ K

( 1

dimA
− 1

2

)
,

where K = (1 + k)/(1 − k). Here dim denotes any one of dimP , dimH or
dimM . In the case of dimM , we also suppose that the set A is bounded.

Proof of Theorem 1.10. By Theorem 3.5, there exists a holomorphic motion
f : D × C → C such that fk = F . For λ ∈ D, set Aλ := fλ(A). By The-
orems 1.3, 1.4 and 1.6, either λ 7→ (1/ dim(Aλ) − 1/2) is an inf-harmonic
function on D, or, at the very least, it is a supremum of inf-harmonic func-
tions. Either way, it satisfies Harnack’s inequality, so, for all λ ∈ D, we
have

1− |λ|
1 + |λ|

( 1

dim(A0)
− 1

2

)
≤
( 1

dim(Aλ)
− 1

2

)
≤ 1 + |λ|

1− |λ|

( 1

dim(A0)
− 1

2

)
.

In particular, taking λ = k, we obtain (10.1). �

Remark. One consequence of Theorem 1.10 is that, if f : D × A → C is
a holomorphic motion and Aλ = fλ(A), then the map λ 7→ dim(Aλ) is a
continuous function. For the Minkowski and packing dimensions, this was
also proved in Corollary 1.5. For all three notions of dimension, it can also
be seen more directly as follows.

As λ → λ0 ∈ D, the transition map fλ ◦ f−1
λ0

is k-quasiconformal with
k tending to 0, hence also Hölder-continuous with Hölder exponent tend-
ing to 1 (see [2, Theorem 12.2.3 and Corollary 3.10.3]). Thus dim(Aλ) =
dim(fλ ◦ f−1

λ0
)(Aλ0)→ dim(Aλ0) as λ→ λ0.

10.2. Distortion of area by quasiconformal maps.

Proof of Theorem 1.11. Let F : C → C be a k-quasiconformal homeomor-
phism which is conformal on C\∆, where ∆ is a compact set of logarithmic
capacity at most 1, and such that F (z) = z+o(1) near∞. Let A be a Borel
subset of ∆.

Let k := (K−1)/(K+1). By Theorem 3.4, there is a holomorphic motion
f : D × C → C with fk = F and µfλ = (λ/k)µF for each λ ∈ D. We may
also require that fλ(z) = z + o(1) near ∞.

Suppose first that µF = 0 a.e. on A. By Theorem 1.9(i), the function
λ 7→ log(π/|Aλ|) is inf-harmonic on D. In particular, it satisfies Harnack’s
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inequality there:

log
( π

|Aλ|

)
≥ 1− |λ|

1 + |λ|
log
( π

|A|

)
(λ ∈ D).

Setting λ = k, we obtain

log
( π

|F (A)|

)
≥ 1

K
log
( π

|A|

)
.

This proves (i).
Suppose instead that µF = 0 a.e. on C \ A. By Theorem 1.9(ii), the

function λ 7→ |Aλ| is inf-harmonic on D. In particular, it satisfies Harnack’s
inequality there:

|Aλ| ≤
1 + |λ|
1− |λ|

|A| (λ ∈ D).

Setting λ = k, we obtain

|F (A)| ≤ K|A|.
This proves (ii).

Finally, the general case (iii) is deduced from (i) and (ii) via a standard
factorization process, see e.g. [2, Theorem 13.1.4]. �

Remark. As mentioned in §9, our proof of part (i) of Theorem 1.11 is quite
similar to the original proof of Eremenko and Hamilton [8], as presented in
[2, §13.1]. On the other hand, our proof of part (ii) is completely different
from (and rather simpler than) the methods used in [8] and [2].

10.3. Symmetric holomorphic motions and inf-sym-harmonic func-
tions. In preparation for the proofs of Theorems 1.12 and 1.13, we study
what can be said about the function 1/ dim(Aλ) when A is a subset of R
and f : D× C→ C is a holomorphic motion that is symmetric in the sense
defined below.

Definition 10.1. We say that a holomorphic motion f : D × C → C is
symmetric if

fλ(z) = fλ(z) (λ ∈ D, z ∈ C).

Definition 10.2. We say that a harmonic function h : D→ R is symmetric
if h(λ) = h(λ) for all λ ∈ D. A function u : D→ [0,∞) is inf-sym-harmonic
if there is a family H of symmetric harmonic functions on D such that

u(λ) = inf
h∈H

h(λ) (λ ∈ D).

We now state symmetric versions of Lemmas 5.2 and 7.1.

Lemma 10.3. Let f : D×C→ C be a symmetric holomorphic motion and
let A be a bounded subset of R with dimM (A) > 0. Set Aλ := fλ(A). Then
there exists an inf-sym-harmonic function u on D such that

u(0) = 1/dimM (A) and u(λ) ≥ 1/dimM (Aλ) (λ ∈ D).
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Lemma 10.4. Let f : D×C→ C be a symmetric holomorphic motion and
let A be a subset of R with dimH(A) > 0. Set Aλ := fλ(A). Then there
exists an inf-sym-harmonic function u on D such that

u(0) = 1/ dimH(A) and 1/2 ≤ u(λ) ≤ 1/ dimH(Aλ) (λ ∈ D).

Proof. The proofs follow closely those of Lemmas 5.2 and 7.1, with the
following differences:

• If S ⊂ R, then the function log(M/ diam fλ(S)) defined in Lemma
5.1 is inf-sym-harmonic on D(0, ρ). This can be seen directly from
the formula

log
( M

diam fλ(S)

)
= inf

{
log
( M

|fλ(z)− fλ(w)|

)
: z, w ∈ S, z 6= w

}
,

using the symmetry relation fλ(z) = fλ(z).
• Consequently, if we replace the occurrences of fλ(D) and fλ(Q) in

the proofs of Lemmas 5.2 and 7.1 by fλ(D ∩ R) and fλ(Q ∩ R)
respectively, then all the functions that were previously inf-harmonic
are now inf-sym-harmonic. Intersecting with R leads to no loss of
information about A, since A ⊂ R.
• When applying the implicit function theorem or its corollary (The-

orem 4.5 and Corollary 4.6), it is now assumed that the functions
log(1/aj) are inf-sym-harmonic, and the conclusion is now that 1/s
is inf-sym-harmonic (or s ≡ 0). This follows by applying Lemma 4.7,
taking U to be the inf-cone of inf-sym-harmonic functions. �

10.4. Dimension of quasicircles. In this subsection, we establish Theo-
rem 1.12. More precisely, we use Lemma 10.4 to show that the Hausdorff
dimension of a k-quasicircle is at most 1 + k2.

Definition 10.5. Let k ∈ [0, 1). A curve Γ in C is a k-quasicircle if Γ =
g(R), where g : C → C is a normalized k-quasiconformal homeomorphism.
By normalized, we mean simply that g fixes 0 and 1.

Quasicircles have been studied extensively over the years because of the
desirable function-theoretic properties of the domains that they bound, see
e.g. [10]. In particular, the problem of finding upper bounds for the Haus-
dorff dimension of a k-quasicircle in terms of k has attracted much interest.
Theorem 1.10 implies that if Γ is a k-quasicircle, then

dimH(Γ) ≤ 1 + k.

Motivated by examples of Becker and Pommerenke [5], Astala asked in [1]
whether the upper bound can be replaced by 1 + k2. This was answered in
the affirmative by Smirnov in [23]. As we will now see, Astala’s question
can also be answered using inf-harmonic functions.

We first need a result on symmetrization of Beltrami coefficients due to
Smirnov [23, Theorem 4]. See also [2, §13.3.1].
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Lemma 10.6. The function g in Definition 10.5 may be chosen so that, in
addition, its Beltrami coefficient satisfies the antisymmetry relation

(10.2) µg(z) = −µg(z) a.e. in C.

We will also need the following Harnack-type inequality for inf-sym-har-
monic functions, reminiscent of [23, Lemma 7]. See also [2, Lemma 13.3.8].

Lemma 10.7. Let v : D→ [0,∞) be an inf-sym-harmonic function. Then

1− y2

1 + y2
v(0) ≤ v(iy) ≤ 1 + y2

1− y2
v(0) (y ∈ (−1, 1)).

Proof. Write
v(λ) = inf

h∈H
h(λ) (λ ∈ D),

where each h ∈ H is a positive and symmetric harmonic function on D.
Fix h ∈ H, and set k(λ) := (h(λ) + h(−λ))/2. Clearly k is an even positive
harmonic function on D. Thus it can be written as k(λ) = l(λ2), where l is a
positive harmonic function on D. Applying the standard Harnack inequality
to l, we get

1− |λ|2

1 + |λ|2
k(0) ≤ k(λ) ≤ 1 + |λ|2

1− |λ|2
k(0) (λ ∈ D).

As h is symmetric, we have

h(iy) =
h(iy) + h(−iy)

2
= k(iy) (y ∈ (−1, 1)).

Hence
1− y2

1 + y2
h(0) ≤ h(iy) ≤ 1 + y2

1− y2
h(0) (λ ∈ D).

Taking the infimum over all h ∈ H gives the result. �

We can now prove the main result of this subsection.

Proof of Theorem 1.12. Let Γ be a k-quasicircle. By Lemma 10.6, we can
write Γ = g(R) for some normalized k-quasiconformal mapping g : C → C
whose Beltrami coefficient µg satisfies the antisymmetry relation (10.2). For
λ ∈ D, define a Beltrami coefficient µλ by

µλ :=
λ

ik
µg,

and denote by fλ : C → C the unique normalized quasiconformal mapping
whose Beltrami coefficient is µλ, as given by Theorem 3.3. Note that f0 is
the identity and fik = g. It follows from Theorem 3.4 that the maps fλ
define a holomorphic motion of C. Moreover, we have

µλ(z) =
λ

−ik
µg(z) = µλ(z) a.e. in C.

It easily follows that the maps fλ inherit the same symmetry:

fλ(z) = fλ(z) (λ ∈ D, z ∈ C),



HOLOMORPHIC MOTIONS 29

see e.g. [2, Section 13.3.1]. In other words, the holomorphic motion f is
symmetric in the sense of Definition 10.1.

Now, let A := R. By Lemma 10.4, there is an inf-sym-harmonic function
u on D such that

u(0) = 1/ dimH(A) = 1 and 1/2 ≤ u(λ) ≤ 1/ dimH(Aλ) (λ ∈ D).

In particular, the function v := u−1/2 is also inf-sym-harmonic, and Lemma
10.7 yields

v(ik) ≥ 1− k2

1 + k2
v(0) =

1

2

1− k2

1 + k2
.

But also

v(ik) ≤ 1

dimH(fik(A))
− 1

2
=

1

dimH(Γ)
− 1

2
,

and hence we obtain
dimH(Γ) ≤ 1 + k2,

as required. �

Remark. In fact, the upper bound in Theorem 1.12 is not sharp, as recently
proved by Oleg Ivrii [13].

10.5. Quasisymmetric distortion spectrum. In this subsection, we prove
Theorem 1.13. More precisely, we use Lemma 10.3 to estimate the Minkowski
and packing dimensions of the image of a subset of the real line under a qua-
sisymmetric map.

Definition 10.8. Let k ∈ [0, 1). A homeomorphism g : R → R is called
k-quasisymmetric if it extends to a normalized k-quasiconformal map g :
C→ C such that g(z) = g(z) for all z ∈ C.

For the proof of Theorem 1.13, we need the following Schwarz–Pick type
inequality, see [18, Lemma 2.2].

Lemma 10.9. Let φ : D → D be a holomorphic function. Suppose that

φ(λ) = φ(λ) for all λ ∈ D and that φ(λ) ≥ 0 for all λ ∈ (−1, 1). Then

φ(k) ≤

(
k +

√
φ(0)

1 + k
√
φ(0)

)2

(0 ≤ k < 1).

Proof of Theorem 1.13. It is enough to prove the result for the Minkowski
dimension. The case of the packing dimension then follows easily by applying
Proposition 2.3.

Let g : R → R be a k-quasisymmetric map, and let A ⊂ R be a
bounded set with dimM (A) = δ, where 0 < δ ≤ 1. It suffices to show
that dimM (g(A)) ≥ ∆(δ, k), since the upper bound follows from the lower
bound, replacing g by g−1 and using the definition of ∆∗(δ, k).

Extend g to a normalized k-quasiconformal mapping g : C→ C such that
g(z) = g(z) for all z ∈ C. The Beltrami coefficient µg satisfies

µg(z) = µg(z) (z ∈ C).
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Therefore, by a similar construction to that in the proof of Theorem 1.12,
there is a symmetric holomorphic motion f : D × C → C with fk = g. By
Lemma 10.3, there exists an inf-sym-harmonic function u on D such that

u(0) = 1/dimM (A) = 1/δ and u(λ) ≥ 1/dimM (Aλ) (λ ∈ D).

The function v := u− 1/2 is also inf-sym-harmonic, and we can write

v(λ) = inf
h∈H

h(λ),

where each h ∈ H is a positive, symmetric harmonic function on D.
Fix h ∈ H. Since h is harmonic and h(λ) = h(λ) for all λ ∈ D, there is

a holomorphic function H on D with ReH = h and H(λ) = H(λ) for all
λ ∈ D. Then H maps D into the right half-plane. Also, for λ ∈ (−1, 1), we
have

H(λ) = h(λ) ≥ v(λ) ≥ 1

dimM (Aλ)
− 1

2
≥ 1

2
,

since Aλ ⊂ R by the symmetry of the holomorphic motion. It follows that
the function

φ :=
2H − 1

2H + 1

satisfies the assumptions of Lemma 10.9, and we get

2h(k)− 1

2h(k) + 1
= φ(k) ≤

(
k + l′

1 + kl′

)2

,

where l′ =
√
φ(0). Using the fact that the functions x 7→ (2x− 1)/(2x+ 1)

and x 7→ (k+x)/(1+kx) are increasing, we obtain, after taking the infimum
over all h ∈ H,

2v(k)− 1

2v(k) + 1
≤
(
k + l

1 + kl

)2

,

where

l =

(
2v(0)− 1

2v(0) + 1

)1/2

=

(
2(1/δ − 1/2)− 1

2(1/δ − 1/2) + 1

)1/2

=
√

1− δ.

Note that

2v(k)− 1

2v(k) + 1
=

2u(k)− 2

2u(k)
= 1− 1

u(k)
≥ 1− dimM (g(A)).

This gives the desired inequality, namely

dimM (g(A)) ≥ 1−
(
k + l

1 + kl

)2

= ∆(δ, k). �
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11. An open problem

As remarked in the introduction, Theorems 1.4 and 1.7 between them
provide a complete characterization of the variation of the packing dimension
of a set moving under a holomorphic motion. Such a characterization for the
Hausdorff dimension is currently lacking, due to the fact that the conclusion
in Theorem 1.6 is weaker than that in Theorem 1.4. This naturally raises
the following question.

Question 11.1. Let A be a subset of C such that dimH A > 0, and let
f : D × A → C be a holomorphic motion. Set Aλ := fλ(A). Then must
λ 7→ 1/ dimH(Aλ) be an inf-harmonic function on D?

The same question was posed 30 years ago in [19]. As far as we know, it
is still an open problem.

It was shown in [19] that the answer to Question 11.1 is affirmative in the
following special case. Let (Rλ)λ∈D be a holomorphic family of hyperbolic
rational maps. Then the holomorphic motion λ 7→ J(Rλ) defined by their
Julia sets has the property that 1/ dimH J(Rλ) is an inf-harmonic function
on D. The proof relies on an explicit formula for the Hausdorff dimension,
namely the Bowen–Ruelle–Manning formula.

Another special case was established by Baribeau and Roy [4]. They
showed that, if Lλ is the limit set of an iterated function system of con-
tractive similarities depending holomorphically on a parameter λ ∈ D, then,
subject to a technical condition, the map λ 7→ Lλ is a holomorphic motion
for which 1/ dimH(Lλ) is an inf-harmonic function on D. Their proof also
relies on an explicit formula for the the Hausdorff dimension, this time the
Hutchinson–Moran formula, Theorem 2.4.

In fact, in both these special cases, it turns out that the Hausdorff di-
mension coincides with the packing dimension, so both results are now con-
sequences of Theorem 1.4, without any recourse to explicit formulas for the
dimension.

Finally, we remark that an affirmative answer to Question 11.1 would
imply that λ 7→ dimH(Aλ) is a subharmonic function (in much the same way
that Corollary 1.5 was proved for the packing and Minkowski dimensions).
Even this apparently weaker statement is also still an open problem. As an
interesting test case, we pose the following question.

Question 11.2. Does the Hausdorff dimension of a holomorphic motion
λ 7→ Aλ always satisfy the inequality

dimH(A0) ≤ max
|λ|=1/2

dimH(Aλ)?
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