Due in class : February 25, 2025.

In the following, the letter U denotes a domain in \mathbb{C} , i.e. a non-empty, connected and open subset of \mathbb{C} .

Problem 1. Let (a_n) be a sequence of complex numbers satisfying

$$\sum_{n=0}^{\infty} |a_n|^2 < \infty.$$

a. Show that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defines a holomorphic function in the open unit disk \mathbb{D} .

b. Compute

$$\lim_{t \to 1^{-}} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 \, d\theta$$

in terms of the sequence (a_n) .

Problem 2. Recall the differential operators

$$f_z := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad f_{\overline{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

acting on smooth functions $f: U \to \mathbb{C}$. If f:=u+iv, we write $\overline{f}:=u-iv$.

a. Verify the product rules

$$(fg)_z = f_z g + fg_z \quad (fg)_{\overline{z}} = f_{\overline{z}} g + fg_{\overline{z}}.$$

b. Show that

$$\overline{f}_{\overline{z}} = \overline{f_z} \quad \overline{f}_z = \overline{f_{\overline{z}}}.$$

c. Show that

$$\Delta f = 4f_{z\overline{z}} = 4f_{\overline{z}z},$$

where Δ is the Laplacian operator $\Delta f := f_{xx} + f_{yy}$. Deduce that $\Delta f = 0$ in U if $f: U \to \mathbb{C}$ is holomorphic.

d. Show that if $f: U \to \mathbb{C}$ is holomorphic, then

$$\Delta |f|^2 = 4|f'|^2$$

in U.

Problem 3. Let $f: U \to \mathbb{C}$ and $g: U \to \mathbb{C}$ be holomorphic. Suppose that $|f(z)|^2 + |g(z)|^2 = 1$

for all $z \in U$. Show that f and g are constant.

Problem 4. Let $f : \mathbb{C} \to \mathbb{C}$ be entire. Show that if

$$\int_{\mathbb{C}} |f(x+iy)| \, dx \, dy < \infty,$$

then f(z) = 0 for all $z \in \mathbb{C}$.

(*Hint*: Use polar coordinates and Cauchy's formula for derivatives to show that $f^{(n)}(0) = 0$ for all n)

Problem 5. Verify that the function

$$f(z) := \frac{1}{2\pi} \int_0^{2\pi} e^{2z \cos t} dt \qquad (z \in \mathbb{C})$$

is entire, and that its power series representation is

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{z^n}{n!}\right)^2 \qquad (z \in \mathbb{C}).$$

Problem 6. A function $f : \mathbb{C} \to \mathbb{C}$ is *doubly periodic* if there are non-zero complex numbers α, β with $\alpha/\beta \notin \mathbb{R}$ such that

$$f(z+\alpha) = f(z+\beta) = f(z)$$
 $(z \in \mathbb{C}).$

Show that every doubly periodic entire function is constant.

Problem 7. Compute the following integrals. Here $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ denotes the unit circle, oriented counter-clockwise.

a. $\int_{\mathbb{T}} \frac{dz}{4z^2+1}.$ **b.** $\int_{\mathbb{T}} \frac{e^z - e^{-z}}{z^4}.$ **c.** $\int_{\mathbb{T}} z^n e^z dz \qquad (n \in \mathbb{Z}).$

Problem 8. Let $f : \mathbb{C} \to \mathbb{C}$ be entire and non-constant. Prove that $f(\mathbb{C})$ is dense in \mathbb{C} .

(*Hint*: If $f(\mathbb{C})$ is not dense in \mathbb{C} , then there exists $w \in \mathbb{C}$ and $\epsilon > 0$ such that $|w - f(z)| \ge \epsilon$ for all $z \in \mathbb{C}$. Now consider g(z) := 1/(w - f(z))).

Problem 9. Let $f : \mathbb{C} \to \mathbb{C}$ be entire. Show that if either Re f or Im f is bounded from above or below in the whole plane, then f is constant.

Problem 10. Let $f : \mathbb{C} \to \mathbb{C}$ be entire, and suppose that

$$|f(z)| \le A + B|z|^n \qquad (z \in \mathbb{C}),$$

for some constants A and B. Prove that f is a polynomial of degree at most n.

Problem 11. Let $f: U \to \mathbb{C}$ be holomorphic in $U \setminus \{z_0\}$ for some $z_0 \in U$. Suppose in addition that f is bounded near z_0 , i.e., there exists $M < \infty$ and r > 0 such that

$$|f(z)| \le M \qquad (z \in \mathbb{D}(z_0, r)).$$

Show that f can be defined at z_0 so that the extended function is holomorphic in U.

(*Hint*: Define $h: U \to \mathbb{C}$ by $h(z) := (z - z_0)^2 f(z)$ for $z \neq z_0$ and $h(z_0) := 0$. Then h has a power series representation $h(z) = \sum_{n=2}^{\infty} a_n (z - z_0)^n$ (why?). Now let $f(z_0) := a_2$ and conclude.)

Problem 12. Let $f : \mathbb{C} \to \mathbb{C}$ and $g : \mathbb{C} \to \mathbb{C}$ be entire. Suppose that

$$|f(z)| \le |g(z)| \qquad (z \in \mathbb{C})$$

Prove that there exists a constant $c \in \mathbb{C}$ such that

$$f(z) = cg(z)$$
 $(z \in \mathbb{C}).$

Problem 13. Let $f: U \to \mathbb{C}$ be holomorphic. Suppose that for each $z \in U$ there exists an integer n such that $f^{(n)}(z) = 0$. Prove that f is a polynomial.

Problem 14. Let $f: U \to \mathbb{C}$ and $g: U \to \mathbb{C}$ be holomorphic. Suppose that

$$\operatorname{Re}(f(z)) = \operatorname{Re}(g(z)) \quad (z \in U).$$

Show that there exists a constant $c \in \mathbb{R}$ such that

$$f(z) = g(z) + ic \qquad (z \in U)$$

Problem 15. Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic and non-constant. Suppose that

$$f(f(z)) = f(z)$$
 $(z \in \mathbb{C})$

Show that f(z) = z for all $z \in \mathbb{C}$.

Problem 16. Let f be holomorphic in a neighborhood of $\overline{\mathbb{D}}$. Suppose that f(0) = 1 and |f(z)| > 2 whenever |z| = 1. Must f have a zero in \mathbb{D} ?

Problem 17. Let f be holomorphic and non-constant in a neighborhood of $\overline{\mathbb{D}}$. Prove that if |f| is constant on \mathbb{T} , then f has at least one zero in \mathbb{D} .

Problem 18. Does there exist an entire function $f : \mathbb{C} \to \mathbb{C}$ such that

$$f\left(\frac{1}{n}\right) = \frac{(-1)^n}{n}$$

for all $n \in \mathbb{N}$?

4

Problem 19. Does there exist an entire function $f : \mathbb{C} \to \mathbb{C}$ such that

$$f\left(\frac{1}{n^2}\right) = \frac{1}{n}$$

for all $n \in \mathbb{N}$?

Problem 20. Let $f : \mathbb{C} \to \mathbb{C}$ be entire. Suppose that

 $|f(1/n)| \le e^{-n}$

for all $n \in \mathbb{N}$. Show that f(z) = 0 for all $z \in \mathbb{C}$.