MATHEMATICS DEPARTMENT ASSESSMENT EXAM

1. Part II: Basic Proofs and Examples.

Problem 1. The relation \sim on \mathbb{R}^{2} defined by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $x_{1}^{2}-y_{1}^{2}=x_{2}^{2}-y_{2}^{2}$ is an equivalence relation (You may prove this).
(1) Find the equivalence class of $(1,0)$.
(2) Describe the collection of all equivalence classes. It should be clear from your description that the equivalence classes form a partition \mathbb{R}^{2}.

Problem 2. A relation \sim is defined on the set of positive integers \mathbb{N} by $n \sim m$ if either n divides m or m divides n. Determine, with proof, whether \sim is or is not:
(1) reflexive
(2) symmetric
(3) anti-symmetric
(4) transitive.

Problem 3. Prove by induction that for all $n \geq 2$:

$$
\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2} \cdot \frac{n+1}{n} .
$$

Problem 4. Let A be an $m \times n$ matrix. Prove that the null space $\left\{\mathrm{x} \in \mathbb{R}^{n} \mid A \mathrm{x}=0\right\}$ of A is a subspace of \mathbb{R}^{n}.
Problem 5. Show that a bounded monotonic sequence of real numbers converges.
Problem 6. Let E be a non-empty and bounded subset of \mathbb{R}, and let $x_{0}=\sup E$. Show that $x_{0} \in E$ or that x_{0} is an accumulation point of E.

Problem 7. Let $f: D \rightarrow \mathbb{R}$ be continuous with D compact. Prove that $f(D)$ is compact.

Problem 8. Give an example, with justification, of a bounded realvalued function on $[0,1]$ that is not Riemann integrable.

Problem 9. Let A, B, and C be sets. Define the symmetric difference of A and B, written as $A+B$, by $A+B=(A \cup B) \backslash(A \cap B)$. Prove or disprove $(A+B) \cap C=(A \cap C)+(B \cap C)$.

Problem 10. Let $f: X \rightarrow Y$ be a function. Prove or disprove the equivalence of the following two statements.
(1) f is injective.
(2) If Z is any set and $h_{1}: Z \rightarrow X$ and $h_{2}: Z \rightarrow X$ are any two functions, then $f \circ h_{1}=f \circ h_{2}$ implies $h_{1}=h_{2}$.

