MATHEMATICS DEPARTMENT ASSESSMENT EXAM

1. Part II: Basic Proofs and Examples.

Problem 1. The relation \sim on \mathbb{R}^2 defined by $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 - y_1^2 = x_2^2 - y_2^2$ is an equivalence relation (You may prove this).

- (1) Find the equivalence class of (1,0).
- (2) Describe the collection of all equivalence classes. It should be clear from your description that the equivalence classes form a partition \mathbb{R}^2 .

Problem 2. A relation \sim is defined on the set of positive integers \mathbb{N} by $n \sim m$ if either n divides m or m divides n. Determine, with proof, whether \sim is or is not:

- (1) reflexive
- (2) symmetric
- (3) anti-symmetric
- (4) transitive.

Problem 3. Prove by induction that for all $n \geq 2$:

$$\left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{9}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{1}{2} \cdot \frac{n+1}{n}$$
.

Problem 4. Let A be an $m \times n$ matrix. Prove that the null space $\{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = 0\}$ of A is a subspace of \mathbb{R}^n .

Problem 5. Show that a bounded monotonic sequence of real numbers converges.

Problem 6. Let E be a non-empty and bounded subset of \mathbb{R} , and let $x_0 = \sup E$. Show that $x_0 \in E$ or that x_0 is an accumulation point of E.

Problem 7. Let $f: D \to \mathbb{R}$ be continuous with D compact. Prove that f(D) is compact.

Problem 8. Give an example, with justification, of a bounded real-valued function on [0, 1] that is not Riemann integrable.

Problem 9. Let A, B, and C be sets. Define the symmetric difference of A and B, written as A + B, by $A + B = (A \cup B) \setminus (A \cap B)$. Prove or disprove $(A + B) \cap C = (A \cap C) + (B \cap C)$.

Problem 10. Let $f: X \to Y$ be a function. Prove or disprove the equivalence of the following two statements.

- (1) f is injective.
- (2) If Z is any set and $h_1: Z \to X$ and $h_2: Z \to X$ are any two functions, then $f \circ h_1 = f \circ h_2$ implies $h_1 = h_2$.