
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR

ALGEBRA

1. Powers of a matrix

We begin with a proposition which illustrates the usefulness of the diagonal-
ization. Recall that a square matrix A is dioganalizable if there is a non-singular
matrix S of the same size such that the matrix S−1AS is diagonal. That means all
entries of S−1AS except possibly diagonal entries are zeros. The numbers which
show up on the diagonal of S−1AS are the eigenvalues of A. For a diagonal matrix,
it is very easy to calculate its powers.

Proposition 1. Let A a diaganalizable matrix of size m × m, and assume that
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
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for a non-singular matrix S.

Then for an integer n ≥ 0

An = S
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S−1.

Proof. Denote the diagonal matrix by

Λ =
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and observe that, since it is very easy to multiply diagonal matrices, we have

(1) Λn =


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At the same time since

Λ = S−1AS,

we find that

Λn = (S−1AS)n = S−1AS S−1AS . . . S−1AS = S−1AnS

because of the obvious cancellations. We thus conclude that

An = SΛnS−1,

and the required identity follows from (1). �

2. Fibonacci numbers and Kepler’s observation

The sequence of Fibonacci numbers Fn

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

is defined recursively as follows. One begins with

F0 = 0, and F1 = 1.

After that every number is defined to be sum of its two predecessors:

Fn = Fn−1 + Fn−2 for n ≥ 2.

The sequence of Fibonacci numbers attract certain interest for various reasons
(see, for instance, http://en.wikipedia.org/wiki/Fibonacci_number ).

In particular, Johannes Kepler (1571 1630) , one of the greatest astronomers in
the history, observed that the ratio of consecutive Fibonacci numbers converges to
the golden ratio.

Theorem (Kepler).

lim
n→∞

Fn+1

Fn

=
1 +

√
5

2

In this note, we make use of linear algebra in order to find an explicit formula
for Fibonacci numbers, and derive Kepler’s observation from this formula. More
specifically, we will prove the following statement.

Proposition 2. For n ≥ 1

Fn =
(1 +

√
5)n − (1 −

√
5)n

2n
√

5
.

We now show how to derive Kepler’s observation from Proposition 2.

Proof of Kepler’s observation. We simply calculate the limit as follows:
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lim
n→∞

Fn+1

Fn

= lim
n→∞

(1 +
√

5)n+1 − (1 −
√

5)n+1

2n+1
√

5

2n
√

5

(1 +
√

5)n − (1 −
√

5)n

=
1

2
lim

n→∞

(1 +
√

5)n+1 − (1 −
√

5)n+1

(1 +
√

5)n − (1 −
√

5)n

=
1

2
lim

n→∞

(1 +
√

5) −
(

1−
√

5

1+
√

5

)n

(1 −
√

5)

1 −
(

1−
√

5

1+
√

5

)n =
1 +

√
5

2

since

lim
n→∞

(

1 −
√

5

1 +
√

5

)n

= 0

as soon as
∣

∣

∣

∣

∣

1 −
√

5

1 +
√

5

∣

∣

∣

∣

∣

< 1.

�

The rest of the note is devoted to the proof of Proposition 2 with the help of
Linear Algebra, and Proposition 1 in particular.

3. Linear Algebra interpretation of Fibonacci numbers

Let L be the linear operator on R
2 represented by the matrix

A =

(

1 1
1 0

)

with respect to the standard basis of R
2. For any vector v = (x, y)T , we have that

L(v) =

(

1 1
1 0

)(

x

y

)

=

(

x + y

x

)

.

In particular, for the vector uk whose coordinates are two consecutive Fibonacci
numbers (Fk, Fk−1)

T , we have that

L(uk) = A

(

Fk

Fk−1

)(

1 1
1 0

)(

Fk

Fk−1

)

=

(

Fk + Fk−1

Fk

)

=

(

Fk+1

Fk

)

= uk+1.

Thus we can produce a vector whose coordinates are two consecutive Fibonacci
numbers by applying L many times to the vector u1 with coordinates (F1, F0)

T =
(1, 0):

(2)

(

Fn+1

Fn

)

= An

(

1
0

)

Equation 2 is nothing but a reformulation of the definition of Fibonacci numbers.
This equation, however, allows us to find an explicit formula for Fibonacci numbers
as soon as we know how to calculate the powers An of the matrix A with the help
of the diagonalization.
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4. Diagonalization of the matrix A and proof of Proposition 2

We begin with finding the eigenvalues of A as the roots of its characteristic
polynomial

p(λ) = det(A − λI) = det

(

1 − λ 1
1 0 − λ

)

= λ2 − λ − 1.

We make use of the quadratic formula to find the roots as

(3) λ1 =
1 +

√
5

2
and λ2 =

1 −
√

5

2
,

and we conclude, since the two eigenvalues are real and distinct, that the matrix A

dioganalizable. In order to dioganalize it, we need to find a basis which consists of
eigenvectors of the linear operator L.

Let us find the eigenvectors from the equations

L(v1) = λ1v1, and L(v2) = λ2v2

or, in coordinates with respect to the standard basis of R
2,

(

1 1
1 0

)(

x1

y1

)

= λ1

(

x1

y1

)

, and

(

1 1
1 0

)(

x2

y2

)

= λ2

(

x2

y2

)

.

We solve these equations and find eigenvectors:
(

x1

y1

)

=

(

λ1

1

)

, and

(

x2

y2

)

=

(

λ2

1

)

The transition matrices between the standard basis and the basis of eigenvectors is
thus

S =

(

λ1 λ2

1 1

)

and

S−1 =

(

1

λ1−λ2

λ2

λ2−λ1

1

λ2−λ1

λ1

λ1−λ2

)

=
1

λ1 − λ2

(

1 −λ2

−1 λ1

)

We can now check that, as expected,

(4) S−1AS =

(

λ1 0
0 λ2

)

.

We are now in a position to prove Proposition 2 with the help of the dioganal-
ization (4).

Proof of Proposition 2. Proposition 1 now implies that

An = S

(

λn
1 0
0 λn

2

)

S−1,

and we combine this with equation (2) to obtain that
(

Fn+1

Fn

)

= An

(

1
0

)

= S

(

λn
1 0
0 λn

2

)

S−1

(

1
0

)

=
1

λ1 − λ2

(

λ1 λ2

1 1

)(

λn
1 0
0 λn

2

)(

1 −λ2

−1 λ1

)(

1
0

)

=
1

λ1 − λ2

(

λn+1
1 − λn+1

2

λn
1 − λn

2

)

.
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Equating the entries of the vectors in the last formula we obtain in view of (3) that

Fn =
λn

1 − λn
2

λ1 − λ2

=
(1 +

√
5)n − (1 −

√
5)n

2n
√

5

as claimed in Proposition 2. �

Remark 1. Using the explicit formula from Proposition 2 one may address some
other questions about Fibonacci numbers.

Remark 2. It was Linear Algebra, specifically the diagonalization procedure, which
allowed us to obtain the explicit formula in Proposition 2. This is not the only way
to prove the formula.

Remark 3. The sequence of Fibonacci is a very simple example of a sequence given
by a recursive relation. One may apply similar methods in order to investigate
other sequences given by recurrence relations.


