Name: _____ ## Question 1 Let $K \supset F$ be a field extension. Let $u \in K$, and let $p \in F[x]$ be the minimal polynomial of u. Let $f \in F[x]$ be such that f(u) = 0. Circle True if the statement must be true, and False if the statement may be false. ``` TRUE FALSE If K is finite-dimensional over F then K is a simple extension of F. ``` TRUE FALSE If $$K = F(u)$$ is a simple extension of F , then p splits completely in K . TRUE FALSE If $$K$$ is finitely-generated over F then K is an algebraic extension of F . TRUE FALSE If $$K$$ is transcendental over F , then K is infinite dimensional over F . TRUE FALSE If $$K$$ is algebraic and separable over F , then K is normal over F . TRUE FALSE If K is normal over F, then f splits completely in $$K[x]$$. TRUE FALSE If K is normal over F, then p splits completely in $$K[x]$$. TRUE FALSE If $$K$$ is separable over F , then f splits completely in $K[x]$. TRUE FALSE If $$F$$ has characteristic zero, then f is separable. TRUE FALSE If $$K$$ has characteristic zero, then F is of characteristic zero. TRUE FALSE $$F(u) \subseteq F(u^2)$$. TRUE FALSE $$F(u) \supseteq F(u^2)$$. TRUE FALSE If $$v, w \in K$$ are algebraic over F and $w \neq 0$, then vw^{-1} is algebraic over F . ## Question 2 Let K be an extension of a field F, and let E be an intermediate field so that $F \subseteq E \subseteq K$. Assume that both field extensions $F \subseteq E$ and $E \subseteq K$ are finite dimensional. Circle True if the statement must be true, and False if the statement may be false. ``` TRUE FALSE The field K is algebraic over F. ``` TRUE FALSE If $$F$$ is of characteristic zero then there exists $p \in F[x]$ such that $K = F[x]/(p)$. TRUE FALSE If $$K$$ is normal over F , then K is normal over E . TRUE FALSE If $$K$$ is separable over F , then K is separable over E . TRUE FALSE If $$K$$ is simple over F , then K is simple over E . TRUE FALSE If $$K$$ is normal over F , then E is normal over F . $Question \ 3$ Does there exist an irreducible polynomial $p \in \mathbb{Q}[x]$ with multiple roots? Verify your answer. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{-2})$. a) Extend the set $\{\sqrt{2}, \sqrt{-2}\}$ to a basis of K as a vector field over \mathbb{Q} . **b)** Find $Gal_{\mathbb{Q}}K$. ## $Question\ 5$ | Let p be a prime, and let $n \geq 1$ be an integer. Let K be a field of order p^n , and let \mathbb{Z}_p be its prime subfield. | This | |---|------| | question is about the field extension $K \supseteq \mathbb{Z}_p$ and its Galois group. | | | a) What is the characteristic of the field K ? | | - **b)** What is the dimension $[K:\mathbb{Z}_p]$? - **c)** Is the field extension $K \supseteq \mathbb{Z}_p$ separable? Explain your answer. **d)** Is the field extension $K \supseteq \mathbb{Z}_p$ normal? Explain your answer. e) What can we conclude about the order $|Gal_{\mathbb{Z}_p}K|$ out of the above $\mathbf{a}-\mathbf{d}$? Explain why we need all these statements for your conclusion. | f) Prove that the group $Gal_{\mathbb{Z}_p}K$ is cyclic. | | |--|--------------------| | Consider the map $f:K\to K$ defined by $f(t)=t^p$ for $t\in K$. State without proof the properties of the map f which all that $f\in Gal_{\mathbb{Z}_p}K$. Then prove that f generates the group $Gal_{\mathbb{Z}_p}K$. | ow you to conclude | | and $f \in \operatorname{Sur}_p \mathbb{R}^p$. Then prove that f generates the group $\operatorname{Sur}_p \mathbb{R}^p$. | 1 | | g) Let $n = 12$. List all integers m such that K has a subfield E of order p^m . Make use of Galois to justify your answer. | correspondence | | to justify your unit to . | | | | | | | | | | | | | |