Name: _____

Question 1

Let $K \supset F$ be a field extension. Let $u \in K$, and let $p \in F[x]$ be the minimal polynomial of u. Let $f \in F[x]$ be such that f(u) = 0.

Circle True if the statement must be true, and False if the statement may be false.

```
TRUE FALSE If K is finite-dimensional over F then K is a simple extension of F.
```

TRUE FALSE If
$$K = F(u)$$
 is a simple extension of F , then p splits completely in K .

TRUE FALSE If
$$K$$
 is finitely-generated over F then K is an algebraic extension of F .

TRUE FALSE If
$$K$$
 is transcendental over F , then K is infinite dimensional over F .

TRUE FALSE If
$$K$$
 is algebraic and separable over F , then K is normal over F .

TRUE FALSE If K is normal over F, then f splits completely in
$$K[x]$$
.

TRUE FALSE If K is normal over F, then p splits completely in
$$K[x]$$
.

TRUE FALSE If
$$K$$
 is separable over F , then f splits completely in $K[x]$.

TRUE FALSE If
$$F$$
 has characteristic zero, then f is separable.

TRUE FALSE If
$$K$$
 has characteristic zero, then F is of characteristic zero.

TRUE FALSE
$$F(u) \subseteq F(u^2)$$
.

TRUE FALSE
$$F(u) \supseteq F(u^2)$$
.

TRUE FALSE If
$$v, w \in K$$
 are algebraic over F and $w \neq 0$, then vw^{-1} is algebraic over F .

Question 2

Let K be an extension of a field F, and let E be an intermediate field so that $F \subseteq E \subseteq K$. Assume that both field extensions $F \subseteq E$ and $E \subseteq K$ are finite dimensional.

Circle True if the statement must be true, and False if the statement may be false.

```
TRUE FALSE The field K is algebraic over F.
```

TRUE FALSE If
$$F$$
 is of characteristic zero then there exists $p \in F[x]$ such that $K = F[x]/(p)$.

TRUE FALSE If
$$K$$
 is normal over F , then K is normal over E .

TRUE FALSE If
$$K$$
 is separable over F , then K is separable over E .

TRUE FALSE If
$$K$$
 is simple over F , then K is simple over E .

TRUE FALSE If
$$K$$
 is normal over F , then E is normal over F .

 $Question \ 3$ Does there exist an irreducible polynomial $p \in \mathbb{Q}[x]$ with multiple roots? Verify your answer.

Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{-2})$.

a) Extend the set $\{\sqrt{2}, \sqrt{-2}\}$ to a basis of K as a vector field over \mathbb{Q} .

b) Find $Gal_{\mathbb{Q}}K$.

$Question\ 5$

Let p be a prime, and let $n \geq 1$ be an integer. Let K be a field of order p^n , and let \mathbb{Z}_p be its prime subfield.	This
question is about the field extension $K \supseteq \mathbb{Z}_p$ and its Galois group.	
a) What is the characteristic of the field K ?	

- **b)** What is the dimension $[K:\mathbb{Z}_p]$?
- **c)** Is the field extension $K \supseteq \mathbb{Z}_p$ separable? Explain your answer.

d) Is the field extension $K \supseteq \mathbb{Z}_p$ normal? Explain your answer.

e) What can we conclude about the order $|Gal_{\mathbb{Z}_p}K|$ out of the above $\mathbf{a}-\mathbf{d}$? Explain why we need all these statements for your conclusion.

f) Prove that the group $Gal_{\mathbb{Z}_p}K$ is cyclic.	
Consider the map $f:K\to K$ defined by $f(t)=t^p$ for $t\in K$. State without proof the properties of the map f which all that $f\in Gal_{\mathbb{Z}_p}K$. Then prove that f generates the group $Gal_{\mathbb{Z}_p}K$.	ow you to conclude
and $f \in \operatorname{Sur}_p \mathbb{R}^p$. Then prove that f generates the group $\operatorname{Sur}_p \mathbb{R}^p$.	
	1
g) Let $n = 12$. List all integers m such that K has a subfield E of order p^m . Make use of Galois to justify your answer.	correspondence
to justify your unit to .	