Name:

In many cases, you have to just circle an answer.
Please, be careful, I will take points off for wrong circles!

Question 1

Circle True/False

TRUE FALSE Every group of order n has an element of order n
TRUE FALSE The groups \mathbb{Q} and \mathbb{Z} (both additive) are isomorphic
TRUE FALSE The groups $\mathbb{Q}^{*} /\{1,-1\}$ and $\mathbb{Q}^{* *}$ are isomorphic
TRUE FALSE The groups \mathbb{R} and $\mathbb{R}^{* *}$ are isomorphic
TRUE FALSE The groups $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ and \mathbb{Z}_{4} are isomorphic
TRUE FALSE The groups $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ and \mathbb{Z}_{6} are isomorphic
TRUE FALSE The groups \mathbb{C}^{*} and $\mathbb{R}^{* *} \times \mathbb{R} / \mathbb{Z}$ are isomorphic
TRUE FALSE The groups \mathbb{C}^{*} and $\mathbb{R}^{*} \times \mathbb{R}^{*}$ are isomorphic
TRUE FALSE For $n \geq 4$, the group S_{n} is not simple
TRUE FALSE Let $n \geq 3$. For any permutation $\sigma \in S_{n}$ the permutation σ^{2} is even

Question 2

Let G be a group, and assume that $G \neq\left\{e_{G}\right\}$.
Circle True/False
TRUE FALSE If G contains an element of infinite order, then G is infinite

TRUE FALSE If G contains no elements of infinite order, then G is finite

TRUE FALSE If G is simple, then $Z(G)=\langle e\rangle$
TRUE FALSE If G is simple and G is not abelian then $Z(G)=\langle e\rangle$
TRUE FALSE If G has a subgroup $H \neq\left\{e_{G}\right\}$ of index $[G: H]=2$, then G is not simple

Question 3

In this question, count only non-trivial proper subgroups. Specifically, please exclude the whole group and $\{(0,0)\}$ from the counting.
a) How many proper subgroups does the group $\mathbb{Z}_{7} \times \mathbb{Z}_{7}$ have?

Answer
b) How many proper subgroups does the group $\mathbb{Z}_{11} \times \mathbb{Z}_{7}$ have?

Answer

Question 4
a) How many non-isomorphic abelian groups of order 81 are there?
b) How many non-isomorphic abelian groups of order 105 are there?

Question 5

What is the order of A_{4} ?

Question 6
Let

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 2 & 8 & 9 & 4 & 5 & 7 & 1 & 6
\end{array}\right) \in S_{9}
$$

a) Find σ^{17}.

Answer: (your are required to fill in the second row)

$$
\sigma^{17}=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
& & & & & & & & \\
& & & & & & & &
\end{array}\right)
$$

b) Is σ^{17} even or odd?

Circle your answer: EVEN ODD

Question 7

Circle True/False
TRUE FALSE Every group of order 77 is abelian
TRUE FALSE Every group of order 49 is abelian
TRUE FALSE Every group of order 77 is cyclic
TRUE FALSE Every group of order 49 is cyclic

Question 8

Let H_{1} be a subgroup of G_{1} and let H_{2} be a subgroup of G_{2}, and let p be a prime (both G_{1} and G_{2} are assumed to be finite.)

Please circle TRUE if a statement is always true, and FALSE if a statement may be false.

TRUE FALSE $H_{1} \times H_{2}$ is a subgroup in $G_{1} \times G_{2}$

TRUE FALSE If H_{1} is normal in G_{1} and H_{2} is normal in G_{2}, then $H_{1} \times H_{2}$ is a normal subgroup in $G_{1} \times G_{2}$

TRUE FALSE If H_{1} is a Sylow p-subgroup in G_{1} and H_{2} is a Sylow p-subgroup in G_{2}, then $H_{1} \times H_{2}$ is a Sylow p-subgroup in $G_{1} \times G_{2}$

TRUE FALSE If H_{1} is the unique Sylow p-subgroup in G_{1} and H_{2} is the unique Sylow p-subgroup in G_{2}, then $H_{1} \times H_{2}$ is the unique Sylow p-subgroup in $G_{1} \times G_{2}$

