THE McKENZIE-BURRIS CONJECTURE - A SURVEY AND AN APPROACH

by
Alan Day*

§1 THE CONJECTURE

Since Jonsson, [10], characterized distributivity and the author,
[1], characterized modularity, no new Mal'cev type characterizations
for non-trivial lattice identities have been discovered. This state-
ment is of course not completely true as stated. Gedeoriovd, [9], ob-
tained such a characterization for p-modularity but this was shown to
be equivalent to congruence modularity in [3]. Also, Mederly, [12],
characterized n-distributivity, £-modularity and dual Emmodu1arity but
showed in the same paper that these implies congruence modularity. At
the same time, Nation, [14], showed that if the congruence variety sat-
isfied non-trivial lattice identities of a certain form then the variety
was already congruence modular. Nation's general result (and more spe-
cific ones for unary algebrgs (Nation [ﬁ%) semigroups and semi-lattices
(Freese and Nation [8])) led Burris to make a conjecture which McKenzie
formulated at the 1973 Latfice Theory conference at Houston, viz:

McKenzie-Burris conjecture: If the congruence variety of a

variety of algebras satisfies any non-trivial lattice identity,

it is already congruence modular.

Several results have been obtained since that formulation; these
will be discussed later along with a possible way to attack this con-
Jecture. It is noteworthy to state now that even congruence modularity

is not sacred., Freese has announced in [7] that if a variety of
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algebras is congruence modular it already satisfies more special lat-
tice laws. In fact, Jonsson, in a private communication, has stated

that Freese's argument can be modified to produce even the standard

Arguesian Taw.



§2 PROVING CONGRUENCE MODULARITY
As noted originally by Nation, the methods used so far to force

congruence modularity involve a reformulation of the author's result

ine [T

Theorem: Let K be a variety of algebras. Then the following are

equivalent:

(CM1) K s congruence modular

(Cm2) Con(FK(4)) is congruence modular

(CM3) (a,b) e con(c,d)V[con(a,c;b,d)Acon(a,b;c,d)]

(CM4) There exist quaternary polynomials a = mj,
Mys....M; = b satisfying:
(M) m.(x,x,yy) = x (all i)
(M2) ms(x,y,z,2) = m. 1 (x.¥,2,2) (i even)
(M3) mi(x,y,x,y) = mi+1(x,y,x,y) (i odd)

As Nation observed, statement (CM3) of this result is the most
useful version in proving congruence modularity. For in all cases known
to the author, the proof that some weaker hypothesis implies congruence
modularity involves essentially two steps.

Step (1): Derive some polynomial identities in many (say n) variables
from the (weaker) hypothesis.

Step (2): Find the correct substitutions from n variables to four
variables that will allow one to deduce (CM3).

A cursory Took through the 1iterature will perhaps convince one
that the second step is not that difficult. However, the Titerature
presents a fait accompli and not the time and ingenuity required to

come up with the proper substitutions. A result that might proVide
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more latitude in performing the second step (but so far hasn't) is the

following:

Theorem ([4]): Let K be a vareity of algebras. Then K is congru-
ence modular iff (CM5) for any set Xs |X| =2 5, and any equivalence
relations p,o,7 ¢ Eq(X), if pvo = TVO, pAc = TAc and p < ¢ theh

in FK(X):

T ¢ con(p)v[con(o)acon(z)].
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§3 TACKLING THE CONJECTURE

If the conjecture is true then we need a theorem statement 1ike
the following:

(1) For any lattice equation, ¢, and any variety of algebras, K,
if Con K F e then K ig congruence modular.

The above format has been used in [3], [11], [12] and [14] for
special forms of ¢. To use this format for a general proof however
would seem to require a set N of "nice" equations for which two
things would hold. Firstly, congruence ¢ would have to imply congru-
ence modularity for all ¢ ¢ N, and secondly, (perhaps most importantly)
one would need that any lattice identity implies an identity in N.
The author is unaware of any such set N that might fill these two
roles (with the exception of a possibility to be described later).

The aforementioned procedure is essentially a syntactical one. A
rephrasing of the conjecture might supply a semantical approach, viz:
(S I variety of algebras, K, 1is not congruence modular, then
Con(k)h =L,

This approach was attempted in [4] and Freese apparently has some re-
sults in this direction also. The problem here though is what "nice"
set (or class) of lattices does the job? We must be able to find them
in Con(K) and also know that they generate L. One might try the
set of all finite partition lattices, and with respect to them Jonsson

has asked the following initial question.

Problem 1: If K is not congruence modular, does 1(3) (=M3;) belong
to Con(k)?
An affirmative solution here would provide more support to the

conjecture. One must however keep in mind that even though M; 4 Con(S,n)



for any a-semilattice S (Papert [15]), Freese an& Nation, [18],
showed that Con(SA) = L,
The author, at present, feels that a strictly syntactical or seman-
tical approach would be very difficu1t at best and a combination of
both is probably necessary. This feeling is of course purely subjective

. but has some basis in some recent results.

e



§4 SPLITTING LATTICES

The approach to the McKenzie-Burris conjecture that we present
here is based on McKenzie's concept of a splitting lattice (see [13]).
Essentially a splitting lattice is a finite subdirectly irreducible
lattice, S, which can be paired with a (conjugate) eqdation, &,
such that for any variety of lattices, V, either v Fe or Sev
but not both.

The relevance of splitting lattices is three fold. Firstly, all
of the results known so far can be obtained by using conjugate equa-
tions. Secandly, in general the pairing of .a lattice with an equation
allows a combination syntactic-semantic approach which can utilize both
‘methods to their respective maxima. Thirdly, ;hey satisfy a main re-

quirement of a semantical approach in that:

(4.1) Theorem (50 Splitting lattices generate the variety of all
lattices.
The following statements are corollaries whose equivalence with

the theorem was noted by Kostinsky (see 3.

(4.2) Corollary 1: 1In a finitely generated free lattice, every proper

quotient contains a prime quotient.

(4.3) Corollary 2: If Vv is a proper subvariety of lattices then
there exists a splitting lattice S such that v satisfies its con-
Jugate equation,

Corollary 3 states that the conjugate equations of spiitting lat-

tices satisfy the main requirement for a syntactical approach as well.



Very little seems to be known about the form of these equations

however. The known results are:

Theorem (McKenzie [13]): Every conjugate equation for a splitting
lattice is equivalent to an equation of the form P =9 where q/p is
a prime quotient in a finitely generated free lattice.

A lemma which McKenzie communicated to the author provides another

result.

Lemma: Every conjugate equation for a non-distributive splitting

lattice is equivalent to an equation of the form
(pvx)aq < pv(xaq)

where p <q and x is not a variable in p nor in q.
Returning to the semantical approach for a moment, a sideline

problem develops which may be of interest in its own right.

Problem 2: 1Is every splitting lattice the sublattice of a finite par-
tition lattice?

From McKenzie's results, an equivalent formulation would be:

Problem 2*: Is every homomorphic image of a sublattice of a finite

partition lattice again such?
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§5 THE KNOWN RESULTS IN THE FRAMEWORK OF SPLITTING LATTICES

In order to put the known results in a general setting, we need

a construction from [2].

Let A be a lattice, I = [p.q] a closed interval of A and de-
fine: '
(1) ALL] = (AM)u(Ix2)
(i) x =y (in A[I]) iff one of the following hold:

(1) X,y ¢ ANXI and x < s g
(2) x e AL, y.= (65 and e

IA

t in A
(BURS R = il e AST T and s < Yoin A
(4) x

(S5t )ls yi= (ki 5 = £ AN A end: G = 3 4R 2
Intuitively A[I] 1ds formed by splitting in two every element of 1.

A[I] 1is a lattice with this order relation and there is a canonical

epimorphism
k.t ALI] = A

which collapses the doubled elements of I. We will write Alpl if
I = [p,p] 1is a trivial interval.
Now we define a class of splitting Tattices as follows:

Irred.
SERS R T S ds @ finite‘subdirectlyh1attice

and S « D[p] for some finite distributive

lattice D and p ¢ D.

That S; s a class of splitting lattices will be given in the next

section. We will write L/S for the variety geherated by a congugate
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equation for S,

(5.1) Theorem W61 Fopriany: S & Sy and any variety of algebras,
K, if Con(K) < L/S then K is congruence modular, where Con(k)

is the variety of lattices generated by all congruence lattices of

members of K.

(5.2) Corollary: The congruence modular implications in [3], Jdénsson
[11], Mederly [12], and Nation [14] hold.

The corollary holds as the equations considered in all of these
results all fail in some member of $;. Therefore if the congruence

variety of a variety satisfies such an equation, it must be contained

in some L/S.
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§6 A GENERAL APPROACH TO THE CONJECTURE

The key to this hoped-for method to prove the conjecture lies in
the proof of (4.1) To prove (4.1), we used a construction.that'pro—
duced for an arbitrary (finite) lattice A, a lattice A and an epi-
morphism p : A+ A that "fixed up" all the b]aces in A where

Whitman's condition failed. More precisely:

if aab < cvd and {a,b,c.d} n [arb,cvd] = @ in A,
then for every a,b,c,d ¢ A with p(X) = x, x ¢ {a,b,c,d}

we have anb § cvd.

Iterating this construction produced an inverse limit which satisfies
Whitman's condition. Moreover, if one starts with a suitable lattice
(say FD(3)) one obtains a copy of FL(3) in the inverse limit.

Now how does this iteration relate to the conjecture? Mk s
a variety of algebras that is not congruence modular then Con(k)
contains all finite distributive lattices. However, for each finite
distributive lattice, D, D is a finite subdirect product of members
of 8, and (5.1) states that D e Con(K). (If K not congruence mod-
ular then S§; ¢ Con(K).) The hoped for induction to solve the conjec-

ture rests in the following brob]em.

Problem 3: If 'K s not congruence modular and a (finite) lattice
A e Con(K), then A& e Con(K).
If the answer to this problem is affirmative, then the McKenzie-

Burris conjecture is true. Furthermore, if the conjecture is false,



partial solutions to problem 3 may help to determine the equivalence
classes of the induced equivalence relation:

For varieties VsV ik,

Vi = V2 iff for all varieties of algebras K,

Con(K) < v, iff Con(K) < v,

One should note at this time that problem 3 can be reduced using

[5] to the following:

Problem 3*: If K 1is not congruence modular and a finite lattice
A e Con(K), then A[I] e Con(K) where I = [anb;cvd] is a closed
interval of A and {a,b,c,d} n I = g,

It would be of interest to know if the above problem is equivalent

(as it is if A is distributive) to the seemingly weaker statement.

Problem 4: If K 1is not congruence modular and a finite lattice
A e Con(K), then A[p] e Con(K) for all p e A,

In conclusion, we should note that an acid test to the conjecture
and to problem 3, 3* or 4 is the conjugate equation for Ng (see fig.
i), since Ng = A[p] fior A" dl (finite) subd1rect product of Ns and

Ns. Th1s congugate equat1on 1is:

z A [{xa(wv(xayaz))) v (yaza(wv(xayaz)))] <

y v [{xv(wa(xvyvz))) a (yvzv(wa(xvyvz)))]
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