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Polin's Non-Modular Congruence Variety

Recently, S. V. Polin constructed a non-modular congruence variety
and via a rather circuitous route, I received a rough outline of his
extremely neat construction. In the resurrection of Polin's proof from
this note, a rather obvious generalization was obtained, one that Polin
probably knows as well, which produces countably many distinct non-modular
congruence varileties each of which contains no non-distributive modular
lattices as in the case with the variety of semilattices. Since the join
of congruence varieties is again a congruence variety, a result due to
either Ralph Freese or Ralph McKenzie, there are contiﬁuumly many non-
modular congruence varieties.

The main reason for this manuscript is the possibly long delay
before Polin's result will become published. This possibility exists if
for no other reason than the fact that Polin's non-finite basis result was
known by some people for almost two years and is still, to my knowledge,
not in print. The importance of this result seems to demand immediate
circulation. The following is the notes from a seminar on Polin's results

presented at Vanderbilt, 1977.
§1. The Derived Class R[B],

All varieties considered here will be varieties of bounded semi-
lattices with operators. That 1s algebras with one binary, two nullary, and
arbitrarily many unary operations (called operators) and where the first

three make the algebra a bounded (meet) semilattice. The observation that



B, the variety of all Boolean algebras can be defined this way using

(¢ 0, 1, ') is the starting point of Polin's construction.

For any Boolean algebra A e B, (A, >) can be considered as a
category and therefore for any variety R one has functors from (A, >)
into k. If k 1is a variety of bounded semilattices with operators then
a new class of algebras, also bounded semilattices with operators, can be

neatly produced.
For A€ B and functor S: (A, >) + k ie a pair

((s(a): a € A), (E;: a,be A, a>b)) where S(a) € k and for

a>b, Ea: S(a) +~ S(b) satisfying
— b

1 g = 1oy @A)

(2) & o & = (abeea, azb>e)

we define:

L =1L(S, A) = U {{a} x S(a): a € A} and operations on L:

(a, 8@, £) = (a-b, £%, (8)-E°, (¢))

0= (0, OS(O))

(a, 8)F = (a', 1)

(a, 8)° = (a, 0) and for all unary f in kR

£ (a, 8) = (a, £(a))



R[B] = I{L(S, A): A € B} a class of algebras of type (2, 0, O, unary)
fh o
(1-1) Lemma: k[B] is a class of bounded semilattices with operators.

Proof: Clearly multiplication is commutative and idempotent. For associativity

[(2, 8)(®, £)](c, w) = (ab, E3 (BED, (£)) (e, u)

b b S
abe Ean ()65 (D) gy (W)

(abec, &

a b c
(abe, Eabc(S)'Eabc(t)'Eabc(u))

= (as S)[(blt) {0 —u)]-

Note that (a, s8) < (b, t) 1ff a <b and s < EZ(t) and therefore (0, 0)

is the zero element and (1,1) is the unit element of L(S, A).
(1-2) Lemma: rI‘:(f:".[B])‘__:__’z[B]

Proof: Easily II(L(S,, A): 1 ¢ I) =L(I S,, I A,)
y 1?71 ieT 1 1e1 &

(1-3) Lemma: rﬁ(fZ.{B]) < R[B)
Proof: Let M < L(S, A) and define:
B={aec A: MN {a} x S(a) # ¢}

T(b) = {8 € S(b): (b, 8) e M} (b & B)



2 () > T(e) (b, c € B, b > c)

by Zo(e) = E(s).

Standard computation shows that B < A and for each b € B T(b) < s(b).
Now for be B, s€ T(b), b>c and c € B we have (b, s) and (c, 1) € M.
Therefore (b, 8)*(c, 1) = (be, &b (8)*EE (1)) = (e, E2(s)) € M. Clearly

M =U{{b} x T(b): b € B} hence M = L(T, B).
§2, Representation of Congruences,
Let 0 € Con(L(S, A)) and define:

6, = {(a, b) & A%: (a, 1)6(b, 1)}

6, = {(s, ) € 8ta)* s Wy B eI e A

(2-1) Lemma: SA € Con(A) and Ba € Con(S(a)) for all a € A.

Proof: Easy computation.

(2-2) Lemma: (a, 8)0(b, t) iff a0,b and E:b(s)eabE:b(t).

Proof: Assume (a, s)8(b, t) then firstly
(a, 1) = (a, &) 00, )" = (v, D).
Secondly by meeting with (¢, 1) we obtain
(ac, £2 (8))0(be, £>_(£))

and by letting ¢ take on the values a and b



(ab, £2,(8))6(a, )80, £)6(ab, £, ().

Convérsaly if (a, 1)6(b, 1) and (ab, Ezb(s))e(ab, g:b(t)) then meeting

with (c, u) gives

(ac, £ (u))6(be, Er (w).

Using (c, u) € {(a, s), (b, t)} we obtain

(a, 5)0(ab, E2 (s))6(ab, £ (£)) (b

a, 8)0(ab, £3 (s))6(ab, £y (1)) (b, t).
(2-3) Lemma: For a 2ih, e df seat then gﬁ(s)ebgﬁ(t).
Moreover if aBAP then the reverse implication also holds.

Proof: If (a, 8)8(a, t) then by meeting with (b, 1) we obtain
(b, E,(8)) = (ab, EZ, (8))8(ab, E2,(£)) = (b, E2(t))

Conversely if aBAp then since E:b(s) = gﬁ(s)aabg:(t) = ﬁzb(t) we have by
(2-2) (a,s)B(a,t).
(2-4) Corollary: For O € Con(L(S, A)) and a > b consider the diagram

a

Bi(8), sy, (1)

\)a \).b

S(a)/ea S(b)/Bb



Then there exists a unique C:: S(a) /Ba - S('o)/Gb such that

a a : a ;
UboEb = i;bova. If moreover ab Ab then Eb is a monomorphism.

Definition: For algebra L(S, A) € k[B], a congruence representation is

a member (Y; (Ya)a € A) of Con(A) x II(Con(S(a)): a € A) satisfying:

(Rl)a > b and si,[)at imply Eﬁ’(s)wb«i:(t)

(R2)a > b, ayb and E;(s)wbéj:’(t) imply swat.

We let Rep(L(S, A)) be the set of all congruence representations of L(S, A).

(2-5) Lemma: For (Y; (Ya)a € A) € Rep(L(S, A)) then the relation ITJ
defined by

(a, s)P(b, t) iff ayb and E:b(s)tpabc‘;:b(t)

is a congruence on L(S, A).

Proof: 1’[; is clearly reflexive and symmetric. If (a, s)ﬁ)(b, t)’lﬁ(c, u)

then firstly we have aybyc and hence a, b, c, ab, ac, be, and abc

belong to the same 1 class. Secondly we have E_',ab(a)tp hgb (t) and E:c(t)wﬁgc(u).
Since ab, bc > abe we have by (RL): £5, () = £20 (3%, ()W £ §op (£)) =

E b (t) and similarly 5 S (t)wabc abc( u). Therefore since wabc € Con(S(abe))

Eabc(E (8))=€ (8 £ ) = Enr (g

(u)) and ac > abe together

abc’abe abc abe

with acyabe dimplies by (R2) E, (s)wacgac(u) Therefore @ is transitive.



Similar deductions show that ﬁ is compatible with meet and the

unary operations,

(2-6) Theorem: The functions 0 + 0 = (BA; (ea)aeA) and (J; (wa)

acA

determine inverse lattice isomorphisms between (Con(L(S, A)), ) and

) >

(Rep(L(S, A)), <) where the order on Rep(L(S, A)) is the product of the

ineclusion orders.

Proof: That 6 + 8 and Y > $ preserve the order relations is trivial,

hence we need only show the mutual inverse part.

(a, 8)0(b, t)

iff

iff

a(ﬂj)Ab

JOK:

iff

iff

iff

iff

iff

iff

a@Ab

and E2, (30,E0 ()

(a, 8)0(b, t) by (2.2)

(a, DI, 1)

ayb

ayb

and 1= &3 (Y& (1) =1

(a, s)i(a, t)

aja

swat.

and s = E;(S)waig(t) =t

(2-7) Corollary: Arbitary meets in Rep(L(S, A)) are computed component

wise,



We will now equate a congruence on L(S, A) with its congruence

representation.
(2-8) Corollary: (€; (ea)aEA) € Con(L(S, A)) implies
(B3 (8,),cx) € Con(L(S, A)).

Proof: (R2) is trivially satisfied in the second relation and (R1l) follows

from the first.

(2-91 Corollary: (0; (Aa)aeA) € Con(L(S, A)) iff for all a,b€e A, a>Db
and abb imply E:: S(a) » S(b) 1is a monomorphism,

Proof: (R1l) is trivially verified and the stated condition is necessary and

sufficient for (R2) to hold.
§3, kR[B] is a variety:

By the results in section 1 we need only show that R[B] is closed

under %, Therefore let (63 (ea)aeA) be a congruence on L(S, A). By

(2-8) & = (4; (6))

i aeA) is also a congruence on L(S, A).

Define T: (A, >) »k T(a) = S(a)lea and let ;ﬁ: T(a) -+ T(b) be the

a

unique map such that vb°E: =g, v, asin 2.4. Now define

£: L(S, A) + L(T, A) by £(a, 8) = (a, Slea)

f(a, 8) = £(b, t) 1ff (a, s/Ba) = (b, t/@b)

iff a=Db and aeat

iff (a, 8)d(b, t)



Therefore Ker f = & and easy calculations show f is a homomorphism.
Moreover for L(T, A) we have by (2-9) that

Vo= (0 (4.)

A az-:A) € Con(L(T, A)). Since (f % f)_l(lp) = ® we need only

show that there exists g: L(T, A) + L(U, B) such that Ker g = |,
- Let B = Af0. For each a e B, a =a/d we have a >-directed

system of monomorphisms

X
@) = (T(x) —2 T(y): x,yba, x > y)

satisfying the usual compatibility conditions. Therefore define for each

acB

U(a) = 1im D@a) = (U {x} x T(x)) /(@)
- xypa

where (x, s)Z(a)(y, t) iff ;};y(s) = i;iy(t). Now suppose -a-_>__‘5 in B

This is equivalent to: Vx x0Oa implies xbGb. We define ng. : U(a) » U(d)
by

g (G 8)/2@@)) = (b, £ ())/Z(B).

If (x, s)I(a)(y, t) then ;;y(s) = Ciy(t) therefore ?;:b;b(cxxb(s)) =
x e T . oy a wI0 ey
S @) it e = e P il @)y = 52 T e,

That 18 (xb, t_::b(s))Z(F)(yb, c;b(t)) and n.g is well defined. We must

now show the n% satisfy our functorial requirements. For xPa,

ng((x, 8)/2(@) = (xa, T (8))/L(@). But (x, 8)Z(a)(xa, L (s)) since



10

C (s) = Cxa(cxa( 8)). Therefore

oT el

= Lvay:

Now if E'E_E'E_E' we can compute:

Pma((x, 8)/Z@))

[}

oo

n_((xb E L (8)) /(b))

(be, £ (X (8))/Z(@)

(xbe, L3 (8))/2()

and na((x,8)I(@) = (xe, T (8))/Z(e).
But Chp (€5 (s)) = TRS(h (s)), hemce n2 ° nEend 2>b>C in B

Now define g: L(T, A) = L(U, B) by

g(a, 8) = (a, 8)/L(a)

g(a, 1) = g(b, 1) iff (2, L)I(@) (b, 1)
iff abb
and g(a, s) = g(a, t) iff (a, 8)I(a)(a, t)

iff s =¢ .

Therefore Ker g = 1| and an easy check shows that g is a homomofphism. Thus

we have shown

(3-1) Theorem: R[B] is a variety of bounded semilattices with operators.
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84, The relation between Con(k) and Can(R[B]).

(4.1) Lemma: The mapping 6 BA is a lattice homomorphism from

Con(L(S, A)) onto Con(A).

Proof: We have by (2-7) that this map preserves (arbitrary) meets. Now for

0,0 € Con(L(S, A))

a(® v w)Ap iff (a, 1)0 v Y (b, 1)

iff d(a, 1) = (co, uo),....(cn, un) = (b, 1)

(ci, ui)B(ci+l, ui+1) (i even)

(cg> upd¥ley s uypy) (@ odd)
iff }ia = Cas eesseC = b

(ci, 1)6(c 1) (1 even)

i1 °

(ci’ l)‘p(ci_'_l’ 1) (i Odd)

iff aGAV ¢AP

(4-2) Lemma: For 6 € Con(A), R(8) = {y € Con(L(S, A)): wA = 0} € Con(k).

Proof: By (2-7) AR(®) € R(B). Therefore we can factor L(S, A) by AR(O)
and hence without loss of generality assume 6 = AA. But for any system

(Ba)aeA in aIEIACon(S(a)) that satisfies (R1), (A; (ea)aeA) € Con(L(S, A))
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Moreover if (8 )

adaca 2nd (lpa)m:A satisfy (R1) then so does (Gav tpa)

acA’

Therefore R(AA) is a sublattice of HACUn(S(a)) and hence is in Con(R).
. ag

We now define a sequence of lattices

Q
il

1*C

where A*B is the lattice determined by the disjoint union of the posets
(A, <) and (B, <) with a zero and unit adjoined. For example
C

= NS’ the five element non-modular lattice and in general C, = N

2 k k+3

in McKenzie's notation (Reverse extrapolation of McKenzie's notation would

make % = NA’ hence the renumbering).

By various methods one can show that for each n > 1, Cn is a

projective subdirectly irreducible lattice.

(4-3) Lemma: For any n > 1 and any variety R, C e Con(k) implies
C_ 'S Con(S) for some S e k.
Proof: C_€ H S P{Con(S): S € k} implies since C_ is projective that
L A n
Cn € S £{Con(s): S € k}. Now since Cn is subdirectly irreducible it follows
n

that cn e S{con(S): S € k}.

(4=4) Lemma: For each n > 1, (L: c) = {L.e |t c, £1L} isa proper variety

of lattices.
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Proof: Such a class is always closed under é. Cn projective says it is

closed under %, and Cn subdirectly irreducible makes it closed under £.

Moreover it is a proper subvariety as it does not contain Cn

(4-5) Theorem: Let R be a variety of bounded semilattices with operators

such that for some n > 1. C ¢ Con(k) < (i: Co?s

again such a variety with Copq € Con(R[B]) < (L: Cn+2)'

then h[B] is

Proof: By (4-3) we have C, < Con(S) for some S € R, Define S: (2, >) +k
by S(1) =5(0) =5 and £ = L.
Now for each 6 £ Con(S) we have 6 € Con(L(S, 2)) where
o n

{

93 = A, 61 =6 and 6 = Vg. By (4-2) '({8: 0 ¢ ch(§)), =) 1s

~

isomorphic to (Con(S), S). But 22 =V, Zl_h ZO = A also is a congruence
, n
: Ve = B et
on L(S, %), moreover LV O VL(S,Z) and ZAD AL(S,%) for all
8 € Con(S). Therefore l*Cn < 1*Con(S) 5_Con(L(S; 2)).
Now suppose Cn+S = l*Cn+l < Con(L(S, A)) for some L(S, A) in
R[B]. Since ( )A: Con(L(S, A)) - Con(A) is a lattice hqmomorphism and

Boolean algebras are congruence distributive, GA = ¢A =% for all

0, € Cn But then

+1°
C 41 SR € Con(k).

This is a contradiction.

(4=-6) Corollary: There exists a countable sequence of non-modular con-

gruence varieties which contain no non-distributive modular lattices.
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Frodf: let kl = B and kn+l = kn[B]. Then by (4.5), we have

Gn € Con(kn) c (L: Cn+l)'

and therefore M3 ¢ Con(kn)

Alan Day
Vanderbilt 1977

Also, each hn has semilattices as a reduct

by the result for semilattices due to Papert.



