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§1 INTRODUCTION

Starting with Nation's results in [9], several papefs have been
written (Day [3] and [4], Jonsson [6] and Mederly [7]) showing that fhe
modular law is a consequence of weaker lattice theoretical assumptions
on the congruence variety of an arbitrary variety of aTgebras. These
results generated a conjecture attributed byrRa1ph McKenzie to Stan]ey 
Burris, viz: |

McKenzie»Burris:' If the congruence variety of a variety of

algebras satisfies any non-trivial lattice identity. then

it is already congruence modular.

The purpose of this paper, is to show that all the above mentioned
results are consequences of a more general theorem.

The major theoretical tool used is the concept of a sp]ifting
lattice developed by McKenzie in [8]. The beauty of splitting lattices
is that each comes paired with a (conjugate) equation so that every
variety of lattices either satisfies this equation or contains the
paired splitting lattice but not both. This allows-one to alternate
between semantical and syntactical arguments as best befits the situa-
tion at hand.

In this paper, we supply a class, S;, of splitting lattices

such that for every S 1in S;, 1if the congruence variety (of a,variety
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of algebras) satisfies the conjugate equation of S, then the variety
is already congruence modular. In a sense (to be explained later) the
members of S; are not far removed from the pentagon, Ns. They are,
informally speaking, all subdirectly irreducible lattices that one can
obtain by "splitting" an e]ement.of a finite distributive\]aftice by a
method developed in [2].

In section 3 we develop the main properties of this class, Si,
and in section 4 we prove the main theorem and show that the previously
known results are corollaries.

Finally, we would Tlike to thank B. Dulley and A.‘McEwan of the
Computer Centre at Lakehead University for indirect stimulation of this
research, B. Jonsson and R. McKenzie for more direct stimulating discus-

sions and Croy Pitzer, for use of his unpublished notes.

§2 PRELIMINARIES _
We need the following facts about splitting lattices from [8] and
[5]. A lattice epimorphism f : A » B is called bounded if =)
is a closed interval for every b e B. That is: there are order mono-
morphisms .8 : B >» A such that for all b e B, f 1{b} = [a(b),8(b)].
Clearly o is v-preserving and 8 is A-preser01ng. We define B to
be the class of a1T finite lattices that are bounded homomorphic images
of finitely generated free lattices, and S to be the class of sub-

directly irreducible members of B.

Theorem (McKenzie [8]): For every S e S, if u—<v are a pair of

elements in S that determine the least non-trivial congruence relation

on S and f : FL(n) > S is an epimorphism bounded below and above



by a,8 : S > FL(n) respectively, then for any variety of lattices

Vs
V E a(v) < g(u) iff S ¢V

We denote the variety determined by the equation a«(v) =< g(u) by

LS. Members of S are called splitting lattices.

Corblldry: Far ST eS8, V(S) c Y(T) 4FF LIS < L/T-
We will also need a construction from [2]. Let A be a lattice
and I = [p,q] an interval in A. Then A[I] = (A~I) u Ix2 is a

lattice with the partial order relation:

x<sy iff (1) x,ye ANl and x < y in A
(2) x
(3) x e ASL, y

v A

N

(a,i), ¥y e ANI and a

A

(byj) and x <b 1in A
(byj)s a<b in A and

or (4) x

1]

(a,i), ¥

2.3 n

H

Moreover « : A[I] ~ A by

Xs X & As

(a,i)

k(x)

fgr X
is a lattice epimorphism.

Theorem ([5]): Let A e B, and take a,b,c.d ¢ A not satisfying
Whitman's condition (i.e. aab < cvd but {a,b,c.d} n [aab,cvd] = )
then for I = [aab,cvd], A[I] ¢ B. Moreover, if f : FL(X) - A is
bounded, (X finite) then there exists a bounded g : FL(X) = A[I]

with xog = f. If also f[X] nI =0, g 1is unique and we have



a(anb,1) = Af{a(p) : p ¢ I and aab < p}
and B(cvd,0) = V{B(q) :q¢I and q < cvd}
where o,8 : A[I] >+ FL(X) are the lower and upper bound mappings for '

g.

§3 THE CLASS S;
Let B be a finite Boolean algebra and take p € B doubly re-

ducible (therefore not an atom, a coatom, nor a bound element). We

write B[p] = B[{p}] where {p} = I = [anb,cvd] for some a,b,c,d e B.
We define:
B, = HSPfin{B[p] : B finite Boolean algebra and
p ¢ B doubly reducible}
8; = {S € By : S is subdirectly irreducible}

Since every finite distributive lattice, D, 1is a sublattice of a
Boolean algebra B 1in such a way that every element of D is doubly
reducible in B, we also have that S; consists of subdirectly irredu-
cible lattices of the form D[p] with D a finite distributive lattice
and p e D.

From [8] and [5], B c B; and therefore every S e 8; is a
splitting lattice. Moreover for every S e S; there exists a finite
Boolean algebra B and doubly reducible ple B with S ¢ !(B[p])
and therefore L/S ¢ L/B[p].

We are therefore interested in conjugate equations for the members

of S; of the form B[p].




Theorem (3.1): Let B be a finite Boolean algebra and take p ¢ B
doubly reducible. Let A = {al,...,an} be the atoms of B not less
than p and B = {bl""’bm} be the atoms of B less than p. Then

a conjugate equation for B[p] is:

j ‘w '.
L
1,n 1.m 1.m afh 1,n «
< No avANL iy )5 N clu.a A v:)
B e e e e

where X = {x

;i 1sisn u‘{yj :1<j<m is a set of ntm dis-

IA

tinct variables, u, = V‘.X\{yj}, 1<

I R

Proof: Define f : FL(X) - B by:

1}
1]

f(xi)

n
o
-
a—
IA
(N
A
=

f(.yj)

Since B € B, and f 1is surjective, f 1is bounded below and above by
o and B : B >» FL(X). Moreover to compute the values of o, and 8
at any member of B we need only now the o-values at the atoms and the

g-values at the coatoms. These are:

a(aé) = X, 1s 2 n
Ci(bj)=.yjs ]Sj:m
and B(a%) = Vis 1<isn
B(bj)'= U e o

Since f[X] n {p} = P we have a unique lifting g : FL(X) - B[p]

bounded by o and B. Moreover



a(p,1) = Ata(c) : c > p}

and B(p,0) = Vig(d) : d < p}

However, since o« and B are isotone and B 1is a finite Boolean alge-

bra, we have

a(p,1) = Ada(c) : p= c}
and B(p,0) = V{g(d) : d—= p}
1.m T.n 1,m
But p=V b;= A aj and therefore if c covers p, c=a, v
J 1 ]

- - .Ign
for some i =1,...,n and if d 1is covered by p, d = b:liAA a'i for
i :

some j =1,...,m. Therefore

3 1.n 1.m
alp,1) = A (x5 v Vo)
1 J
3 1,m 1,n
and B(ps0) = V (u; n A Vi)
e <5l

As mentioned in §2, this provides the splitting equation for B[p].

§4 CONGRUENCE MODULARITY IMPLICATIONS

The main result of this section is the following:

Theorem (4.1): For any S e S; and any variety of algebras K, if
Con(K) c L/S then K 1is already congruence modular.
Before presenting a proof for this theorem, let us first note its

corollaries which fall into two classes.

Corollary 1 (4.2): (Jonsson [6], Mederly [7], Day [3]). Let K be

a variety of algebras whose congruence lattices satisfy one of the

b.
J
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following equations
(1) (xv(yaz))a(zv(xay)) < (za(xv(yaz))) v (xa(zv(xay)))
(2)  (xvy)a(xvz) = xv((xvy)a(xvz)a(yvz))

(3) for some n = 2,

Lyn 1,n 1sn 1,n
A (xvys) s xvl(Voydap (v Voy;)]
i i i J#i

(4) for some n = 3

XV X.) = X, X.
/1'\ B j/;}i J i (1Aj;é1' iy

(5) for some m = 1

],R"'] ( O:m

XoA Xk, ) = K vl (ax.)
0

i<j [ m+1 Tedtens of

Then K 1is congruence modular.
Proof: One need only show in every case that the variety of lattices

defined by the equations are contained in L/S for some S e S;. In
the first four cases, the equations are the precise conjugate equations
for members of S;. For (1) see fig (i), and (2), fig. (ii). For (3)
these are conjugate equations for B[a] where a 1is an atom of the
finite Boolean algebra with n+1 atoms. For (4), these are conjugate
equations of the members of S; given in figure (iii).

Finally for (5) the equation in Xooeoe Xogq fails in Qm+2 for

every m = 1.

Corollary 2 (4.3): (Jonsson [6]). If the congruence variety of a
variety of algebras satisfies a (2,2) inequality, then the variety of

algebras is already congruence modular.



(Actually Jonsson proved a stronger result namely that the variety
will be already.congruence distributive.)

Jonsson showed that such a variety must satisfy an identity of
the form (5) in Corollary 1.

The original result of this type due to Nation in [9] has always
seemed to the author to be the most baffling. The following shows that

it fits nicely into this general framework.

Corollary 4 (4.4): (Nation [9]). Let X be a finite set of Variab]es,
and take Si e X = T i, Fuftherﬁore assume w e FL(X) sat-
isfies

(a) ws Vs,

2,n+1
(b) wavs; & V  (VS;aVs,)
1

then if the congruence variety of a variety of algebras K satisfies
2,n+1

waV¥Sy =V (VSyaVS,)
KR

K 1is already congruence modular.

Proof: We need only produce a member of S; 1in which such an equation
fails. As Nation noted (a) and (b) ake equivalent to the following
statements:

(c) w4 VSi 1 <i < ntl
2,n+1

(@ §¢ QS

-and we should note that (c) is equivalent to



(e) A (Xs8;) sw, 1< <nHl

Without loss of generality, we can assume the inequality holds in

2 and can define for each i = 1,2,...,n+1, 65 FL(X) > 2 by:

0 K= S;

i) =4
1, x ¢S

Since ¢1.(/\(X\S1.)) =1 for each i we have

¢i(w) =] 1 <1< ntl

Therefore for B = 2"*1 there is a unique

¢ : FL(X) » B with mi06 = by 1 <1i < n+l.

i
Nows~ ¢ (w): = 1 = {Aadlall 5 tususil))
4’(\’51) = (051 919---51)

Moreover for X e X;

: 2,n+]
o(x) = #(VS;) iff xe5 N0 S,
1

Therefore consider B[p] where p = ¢(VS;) and define ¢ : FL(X) - B[p]

by

- 2,n+1
(p,])g X A Sl\ Q Si
1

p(x)=
$(x), otherwise

It follows easily that

p(wavS;) = (p,1) and
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2,n+1
(V0 (¥ avS;)) = (p.0)
1

That is, the equation fails in this B[p].

Proof of Theorem: Take B[p] and its conjugate equation as in (3.1),

let K be a variety of algebras, and V be a set of 2+h(m+1) vari-

ables;

IA

V={s,t} v {aij sl = Tsng ) 2 J 2l

1l

and define h : FL(n+m) > con(F(V)). (F(V) FK(V)) by:

h(x-l) Con([s’a-i]]s[tsa.i ,lﬁ'l']])" h<.d.s n

h(yj) = con([aij,aij+1} o B T e | =
Then Con(K) < L/B[u] implies
1,n

1.
j i

where

IA

¥, = conlls.tst e s kfls e kg 1 £ 8 m+1],[a1j : 1< jsm]),

kJ
15=

IA
=

and

0, = con([s,a\ik sl 2r) £ 0] 8k 2 j]’[t’aik : 1 <1 <n, jHlss k < mH1]),

l€3J=m

Therefore there exist terms in |V|-variables s = DD;...;DE =1 sab-

isfying:
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n
: . A
(B1) S s P 1T<isn and 0=<k<=<W

~
I

(B2) Py ej PR+ = j-1 (mod m)

Now we need to find substitutions & : V-~ A = {a,b,c,d} that will
force congruence modularity.

We consider the variables of V ordered in the following sequence

v = (s,t)ouloazo...oun

h . = s g de i iC
where o (a11, ,a1m+1) and o 1is concatenation.

2, 4

Ai =

£(t) = b, and there exists an i e [1,n] such that & '{c.d}
{aij : 1 <j=<ml}. More intuitively, &£ is admissable if s and t
get mapped to a and b respectively, each o gets filled with

A substitution £ : V> A is ca]]ed admissab]e'if £(s)

either a's and b's, or c's and d's, and only one oy gets

filled with c¢'s and d's.

Now let a,B be equivalence relations on A defined by the parti-

tions:

Q
n

[a]lb]lc,d]
= [a,c][b,d]

™
1

We define equivalence relations o and B on the set of all admissable

. substitutions, Sub, by

A

Batv 1Ff g(vz) o c(vz)g 1 < £ < 24n(m+1)

< 2+n(m+1)

1
&=
A

E_EE it E(Vﬁ) B Q(Vﬁ)s ]|

Lemma: a Vv B = VSub
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Proof: Evefy £ e Sub 1is clearly B-equivalent to an admissable sub-

~ stitution & for which £"l{c,d} = A;. Therefore we may restrict our

attention to these admissable substitutions. Also if two. such admissable
substitutions differ only on A;, they are o-equivalent. »Thefefore
what is needed, is & procedure to alter the blocks Al,...,An sequen-
tially and maintain the desired equivalence. In effect then for

E,z € Sub with Al =,£'1{c,d} = c'l{c;d}, we prqdu;e a sequence

G E o sfnse sk & & for which 2

(1) gi_]EVEti 1sisw

c|1'3k1qu...u|f-\_i

and (2) (r,.ilAIU...UA,i =

We illustrate this procedure by an example, to avoid the technically
messy details of a formal proof.

Let i = 3, and j = 3,

(abscdcd;aaabsabba)

oy
1}

= (ab;tcdd;abaaﬁabbb)

o
I

and

Then:

£ = gy a(abjccdd;aaabsabba) -
E(ab;aabb;cccd;abba)-

=(abjaabbjcdcc;abba)
E(ab;ccdd;abaa;abba)'= £1
Blabjaabb;abaa;cddc).
«(ab;aabb;abaa;cddd)
B(abjccdd;abaazabbb) = ¢ = £

Now since the criterion for being admissable is precisely what is

needed to apply the statement (B1) to y = [ab][cd] we obtain thé
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following result.

Corollary: If & and ¢ are admissable substitutions and p, e F(V);

0<k=<Z£, as above, then
(FE(p) sFe(p,)) e congpy(a) v [comgpy(8) A congyly)]

where F& : F(V) > F(A) is the induced homomorphism.

The required admissable substitutions now become obvious from
(B2). viz: for J 8 Jyesesm
Ol X {s}u{a1.k ]2, 12 k2 )
C By %o {thuas, 122, J#1 < k s m}

§ylxl =
; c, X e {377s-..,27j5}

d, X‘g {a-l’j+-lg-.-,a-[’m+l-l}

These substitutions imply from (B2) that

(FEj(pk)’ FEj(pk+])) > CO"F(A)(B) A ConF(A)(Y)

and therefore
(a,b) € ConF(A)(u) v (conF(A)(a) A conF(A)(y)) |
and K s congruence modular by [1].
§5 CONCLUDING REMARKS
Let us now write a “"nice” splitting lattice which is not a

member of Sl. The one that seems most interesting is McKenzie's Ng

(see figure iv). A conjugate equation for Ng is:

2z A [(xa(wv(xayaz))) v (yaza(wv(xayaz)))] <



. following result.

Corollary: If & and ¢ are admissable substitutions and Py € F(V);

0 <k<4£, as above, theﬁ
(Fe(p,) Fi(p,)) & cong (g (a) v [cong y)(8) A congy(y)]

where Fz : F(V) > F(A) 1is the induced homomorphism.

The required admissable substitutions now become obvious from
{B2); viz: for J & lsi«:sM
g We {S}U{aik Tl Lake )
bt %8 {t}U{aik =4 ar gy 0T = £ )

Ej(X) =
.5, €, xa{a”,...,aU}

dy X'& {a],j+1,...,a1,m+1}
These substitutions imply from (B2) that

(Fg5(Py)s FE5(Pry)) € congipy(B) A congpy(v)
and therefore

(a,b) & Cong(gy(a) v (Cong(ay(8) A Cong(py(¥))
and K is congruence modular by [1].

§5 CONCLUDING REMARKS

Let us now write a "nice" splitting lattice which is not a
member of Sl; The one that seems most interesting is McKenzie's Ng

(see figure iv). A conjugate equation for Ng 1is:

z A [(xa(wv(xayaz))) v (yaza(wv(xayaz)))] <
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gy v [(xv(wa(xvyvz))) a (yvzv(wa(xvyvz)))]

At the time of this writing, it is not known to the author whether con-
gruence "L/Ng" implies congruence modular or whether -congruence
L/Ng 1is a Mal'cev condition in its own right. This problem is brobab]y

the next phase in the validity of the McKenzie-Burris conjecture.
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