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Part I

Modular Lattices
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A Very Brief History of Modular Lattices

In 1897 and 1900 Dedekind
defined the modular law:

x ∧ (y ∨ (x ∧ z)) ≈ (x ∧ y) ∨ (x ∧ z),

showed a lattice is modular iff N5 is not a sublattice,

M3 N5

showed the submodules of a module form a modular lattice,
characterized the free modular lattice on 3 generators:
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A Brief History of Modular Lattices

FM(3)
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Some Structure and Some Pathology

Is there a converse to the third bullet point above?

Yes:

Theorem
A complemented modular lattice L of finite dimension n is
isomorphic to the lattice of all subspaces of an n-dimensional
vector space over some skew field.

Well almost. We need n ≥ 4.
Case n = 2. Mk (the 2-dimensional lattice with k atoms) is a
vector space lattice only if k − 1 is a prime power (or infinite). So
M7 is not.
Case n = 3. Length 3 complemented modular lattices L are
projective planes but these are vector space lattices iff L
satisfies Jónsson’s arguesian identity.
Nonarguesian planes cannot be embedded in vector space
lattices, and so are “pathological.”
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The Embedding Problem

While the Mk ’s and nonarguesian projective planes have some
pathology, they don’t settle the following:

The Embedding Problem: Can every modular lattice be
embedded into a complemented modular lattice?

Of course every distributive lattice can be embedded into a
complemented distributive lattice (a Boolean algebra).
Nevertheless the answer is No, as was shown by Hall and
Dilworth the early 1940’s using their now famous Hall-Dilworth
gluing.
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More Pathology: Hall-Dilworth Gluing

If [a) = {x ∈ L0 : x ≥ a} is a filter in a lattice L0 which is
isomorphic to an ideal (b] = {y ∈ L1 : y ≤ b} in a lattice L1

then we can glue these lattices together:

a

b

Hall and Dilworth gave 3 examples showing that not all
modular lattices (not even all finite modular lattices)
can be embedded into a complemented modular lattice,
solving one of the important problems of the time.
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More Pathology: H-D Gluing Examples

L1

L0
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Key Observation:

The automorphism group of Mk consists of all permutations
of the atoms,
and while the automorphism group of vector space lattices
are big,
not all of the permutations of Mk can be extended to
automorphisms of higher dimensional vector space lattices.
This is useful in constructing pathological examples.
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Uses of Hall-Dilworth Gluing

L0 and L1 the same vector space lattice but the gluing
isomorphism (the arrows) does not extend to an
automorphism.

F and K countable fields of characteristics p and q, p ̸= q.
Uses:

The variety of modular lattices is not generated by its finite
members. In fact, the variety generated by modular lattices
of finite dimension is not generated by its finite members.

The equational theory of modular lattices is not computable
(i.e., nonrecursive).

Every free distributive lattice, FD(κ), can be embedded into
a free modular lattice.

Ralph Freese (University of Hawaii) Lattices and Algebras BLAST Apr 6–9, 2024 10 / 33



Uses of Hall-Dilworth Gluing

L0 and L1 the same vector space lattice but the gluing
isomorphism (the arrows) does not extend to an
automorphism.
F and K countable fields of characteristics p and q, p ̸= q.
Uses:

The variety of modular lattices is not generated by its finite
members. In fact, the variety generated by modular lattices
of finite dimension is not generated by its finite members.

The equational theory of modular lattices is not computable
(i.e., nonrecursive).

Every free distributive lattice, FD(κ), can be embedded into
a free modular lattice.

Ralph Freese (University of Hawaii) Lattices and Algebras BLAST Apr 6–9, 2024 10 / 33



Uses of Hall-Dilworth Gluing

L0 and L1 the same vector space lattice but the gluing
isomorphism (the arrows) does not extend to an
automorphism.
F and K countable fields of characteristics p and q, p ̸= q.
Uses:

The variety of modular lattices is not generated by its finite
members. In fact, the variety generated by modular lattices
of finite dimension is not generated by its finite members.

The equational theory of modular lattices is not computable
(i.e., nonrecursive).

Every free distributive lattice, FD(κ), can be embedded into
a free modular lattice.

Ralph Freese (University of Hawaii) Lattices and Algebras BLAST Apr 6–9, 2024 10 / 33



Uses of Hall-Dilworth Gluing

L0 and L1 the same vector space lattice but the gluing
isomorphism (the arrows) does not extend to an
automorphism.
F and K countable fields of characteristics p and q, p ̸= q.
Uses:

The variety of modular lattices is not generated by its finite
members. In fact, the variety generated by modular lattices
of finite dimension is not generated by its finite members.

The equational theory of modular lattices is not computable
(i.e., nonrecursive).

Every free distributive lattice, FD(κ), can be embedded into
a free modular lattice.

Ralph Freese (University of Hawaii) Lattices and Algebras BLAST Apr 6–9, 2024 10 / 33



Uses of Hall-Dilworth Gluing

L0 and L1 the same vector space lattice but the gluing
isomorphism (the arrows) does not extend to an
automorphism.
F and K countable fields of characteristics p and q, p ̸= q.
Uses:

The variety of modular lattices is not generated by its finite
members. In fact, the variety generated by modular lattices
of finite dimension is not generated by its finite members.

The equational theory of modular lattices is not computable
(i.e., nonrecursive).

Every free distributive lattice, FD(κ), can be embedded into
a free modular lattice.

Ralph Freese (University of Hawaii) Lattices and Algebras BLAST Apr 6–9, 2024 10 / 33



Representations with Equivalence Relations
A representation of L is an embedding into EQV(X ), the
lattice of equivalence relations on X .
Whitman: Every lattice has such a representation.
Jónsson:

Every lattice has a 4-permutable representation:
α ∨ β = α ◦ β ◦ α ◦ β.
Every modular lattice has a 3-permutable representation:
α ∨ β = α ◦ β ◦ α, and conversely!
There are modular lattices without a 2-permutable
representation; eg., nonarguesian projective planes.
There is a lattice equation, the arguesian law, stronger than
the modular law, holding in 2-permutable lattices.
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Questions

1 Do all arguesian lattices have a representation by
permuting equivalence relations?

2 Is the class of lattices with a representation by permuting
equivalences finitely axiomizable?

3 Is the class of lattices with a representation by permuting
equivalence relations equational?

Answers:
1 No.
2 No. (Mark Haiman 1991)
3 Open.
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Higher arguesian identities: Bill Lampe

n−1∧
i=0

(αi ∨ α′
i) ≤ α′

0 ∨ (α0 ∧ (α1 ∨ [(α′
0 ∨ α′

1) ∧
n−1∨
i=1

γi ])) (∗n)

where γi = (αi ∨ αi+1) ∧ (α′
i ∨ α′

i+1), mod n so
γn−1 = (αn−1 ∨ α0) ∧ (α′

n−1 ∨ α′
0).

Remarks:
When n = 3 this is Jónsson’s arguesian identity.

(∗n) holds in any lattice representable by permuting
equivalence relations. In fact,.

The relation (∗n) holds if αi and α′
i permute, for each i .
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Haiman’s Lattices, Hn(F)

0

m

1

rn−1 r1

sn−1 s2

r0

s0 s1

qn−1

pn−1 p1

q2q0 q1

p0

r1 ∨ · · · ∨ rn−1
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Theorem (Haiman 1991)
The class of lattices representable with permuting equivalences
is not finitely axiomatizable.

Haiman’s lattices Hn(F) and the equations (∗n) satisfy
(∗n) holds in any lattices of permuting equivalence relations.
(∗n) fails in Hn(F).
Every n − 1 generated sublattice is proper.
Every proper sublattice is embeddable into the lattice of
subspaces of a vector space over F.
Any nonprincipal ultraproduct of the Hn’s is representable by
permuting equivalences.
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Part II

Universal Algebra
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Renaissance: The late 60’s, 70’s and 80’s:

Some Highlights:

Mal’tsev Conditions. Mal’tsev 1954, Jónsson 1967, Day
1969.

V is congruence permutable iff there is a term t with
t(x , x , y) ≈ y ≈ t(y , x , x).

Commutator Theory. Smith 1976, Hagemann-Herrmann
1979.

Representation Theory. Grätzer-Schmidt 1963.

Congruence Varieties. Nation 1973.
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Let V be a variety (equational class) of algebras. Jónsson’s
results above imply

If the congruence lattices of each algebra of V 3-permute
(that is V is 3-permutable), then V is congruence modular.
If V is congruence permutable, then V is congruence
arguesian.

But in fact:

Theorem (RF and B. Jónsson 1976)
If V is congruence modular, then it is congruence arguesian.

Question: Are there stronger lattice identities which are implied
by congruence modularity?
Yes we have a few odd examples.
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Congruence Varieties

To give some context this question we need some definitions.
V denotes a variety of algebras.
Con(V) := {Con(A) : A ∈ V}.
Define

congruence variety of V is the variety of lattices generated
by the congruence lattices of the members of V:

HSP Con(V) = HS Con(V)

congruence prevariety of V by

SP Con(V) = S Con(V)
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Congruence Varieties
Can a modular congruence variety be finitely based?

Almost never:

Theorem (RF, 1994)
If a modular congruence variety is finitely based, then it is
distributive.

Incidentally, there are 2ℵ0 modular congruence varieties.

Work on extending the commutator to nonmodular varieties,
primarily by Kearnes, Kiss, Szendrei and Lipparini, allows us to
extend the above result to:

Theorem (RF & P. Lipparini, 2024)
If a proper congruence variety is finitely based, then it is join
semidistributive.
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Elements of the Proof

M3 is projective for every congruence variety except the
variety of all lattices,

This surprising result uses the result of Kearnes-Kiss that if
α, β and γ ∈ Con(A), where the congruence variety of V (A)
is proper, if α ∨ β = α ∨ γ, then the interval between
α ∨ (β ∧ γ) and α ∨ β is modular.
(SD∨ failure intervals are modular.)

Corollary
Haiman’s lattices, Hn(F), lie in no proper congruence
variety.
The lattice of subspaces of a nonarguesian projective plane
lies in no proper congruence variety.
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Elements of the Proof

Let V be a variety of algebras with congruence variety K.
If V is not congruence semidistributive, then there is a field
F such that all vector space lattices over F lie in K.

In fact they lie in S Con(V).

For each proper congruence variety K there is a field F
such that any nonprincipal ultraproduct of {Hn(F) : n ≥ 3}
lies in K.

Using a standard argument we get:

Corollary
If a proper congruence variety is finitely based, then it is join
semidistributive.
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What about S Con(V)?

An idempotent term d(x , y , z) is a weak difference term if

d(a,a,b) [θ, θ] b [θ, θ] d(b,a,a)

whenever θ is a congruence containing ⟨a,b⟩.
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Sublattices of congruence lattices: S Con(V)
Theorem (RF and P. Lipparini, 2024)
Suppose V is a variety with a weak difference term and that V is
not congruence meet semidistributive. Then every modular
lattice you have ever seen a diagram of, can be embedded into
a congruence lattice of a member of V.
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Sublattices of congruence lattices: S Con(V)

A lattice is 2-distributive if it satisfies

u ∧ (x ∨ y ∨ z) ≈ (u ∧ (x ∨ y)) ∨ (u ∧ (x ∨ z)) ∨ (u ∧ (y ∨ z))

Let D2 be the variety of all modular, 2-distributive lattices.

Theorem (RF and Lipparini (2024))
If V is a variety with a weak difference term and is not meet
semidistributive, then

D2 ⊆ S Con(V)
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Sublattices of congruence lattices: S Con(V)

Agliano, Bertalli and Fioravanti following Kearnes, Kiss and
Szendrei show

Theorem
If V is a variety that V is not congruence meet semidistributive,
then all rods and snakes can be embedded into a congruence
lattice of a member of V.

Ralph Freese (University of Hawaii) Lattices and Algebras BLAST Apr 6–9, 2024 27 / 33



Open Problems

If V is not congruence meet semidistributive, is M4 ∈ S Con(V)?

What about ?

Does Con(P) have a finite equational basis? P is Polin’s variety.

Is any proper, nontrivial congruence variety finitely based other
than distributive lattices?
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Thank You !!
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