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Abstract

Notes from a seminar on p-adic L-functions at Boston University.
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Notation and conventions

If p is a finite prime, Frobp denotes a geometric Frobenius element. We normalize class field theory
so that uniformizers are sent to geometric Frobenii under the Artin reciprocity map. If E is a field
and v is a place of E, then Ev denotes the completion of E at v. If X is a scheme over SpecR and
S is an R-algebra, we denote the base change of X to S by X ×R S.

1 Deligne’s conjecture on special values of motivic L-functions

Fix an algebraic closure Q of Q and an embedding ι∞ : Q→ C. This fixes a complex conjugation
in GQ := Gal(Q/Q) which we denote Frob∞.

1.1 The realizations of a motive

Following [D79], we take a rather basic point of view regarding motives, namely we view them
as a collection of “realizations” together with some comparison isomorphisms. That is to say, we
define a motive to be the collection of data that should come out of an actual theory of motives.
We recommend [D89, §1] for a lengthy discussion of what one might want in such a definition.
For a higher-brow version of this approach see the works of Fontaine and Perrin-Riou where they
introduce the Tannakian category of “(pre-)motivic structures” ([Fo92], [FPR94]).

Let E be a number field. Using ι∞, we identify Hom(E,Q) with Hom(E,C) and denote either
one by JE . A motive of rank d over Q with coefficients in E (e.g. the first homology of an abelian
variety over Q with complex multiplication by an order in E) will be, M , given by the following
data:

(Betti) a Betti realization HB(M):

– HB(M) is a d-dimensional E-vector space,

– it has an E-linear involution F∞,

– HB(M) has a Hodge decomposition

HB(M)⊗Q C =
⊕
i,j∈Z

H i,j(M) (1.1)

such that F∞
(
H i,j(M)

)
⊆ Hj,i(M);

(de Rham) a de Rham realization HdR(M):

– HdR(M) is a d-dimensional E-vector space,

– equipped with a decreasing filtration F idR of E-vector spaces;

(λ-adic) for each finite place λ of E a λ-adic realization Hλ(M):

– Hλ(M) is a d-dimensional Eλ-vector space,
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– with a continuous, Eλ-linear GQ-action ρλ : GQ → AutEλ(Hλ(M));

together with maps I∞ and Iλ for each finite place λ of E, all satisfying the following compatibility
requirements:

• Hλ(M) are compatible in the following sense:

– there is a finite set S of finite primes of Q such that for every p 6∈ S and every finite
prime λ of E coprime to p, ρλ is unramified at p,

– given a finite prime p of Q, then for all finite primes λ of E coprime to p and for all
τ ∈ JE and every extension τ̃ of τ to Eλ, the isomorphism class of

WDeτ(ρλ|Gp)Φ-ss (1.2)

is independent of λ, τ , and τ̃ (see remark 1.1(i) for an explanation),

– for all finite places p of Q, the characteristic polynomial of Frobp is rational and inde-
pendent of λ, i.e.

Zp(T,M) := det
(
1− Frobp T |Hλ(M)Ip

)
∈ Eλ[T ] (1.3)

is “rational” (i.e. lies in E[T ]) and independent of λ coprime to p,

• I∞ is an isomorphism of E ⊗Q C-modules

I∞ : HB(M)⊗Q C−̃→HdR(M)⊗Q C (1.4)

such that the filtration F idR is given by the Hodge filtration, i.e.

I∞

⊕
i′≥i
j

H i′,j(M)

 = F idR ⊗Q C, (1.5)

• for each finite place λ of E, Iλ is an isomorphism of Eλ-vector spaces

Iλ : HB(M)⊗E Eλ−̃→Hλ(M) (1.6)

such that Iλ(F∞) = ρλ(Frob∞).

The motive M will be called pure of weight w ∈ Z if

(Pure∞) hi,j(M) = 0 unless i+ j = w.

Remark 1.1.

(i) Let p be a finite prime of Q, λ a finite prime of E coprime to p, τ ∈ JE , and τ̃ an extension
of τ to Eλ. Fix a decomposition group Gp of GQ at p and identify it with GQp . Then ρλ|Gp
gives rise to a λ-adic Weil–Deligne representation WD

(
ρλ|Gp

)
of the Weil group WQp of Qp as
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explained in [D73, §8.4]. The isomorphism class of the WD representation is independent of
the choice of decomposition group. By extending coefficients to C via τ̃ , we obtain a WD rep-
resentation WDeτ(ρλ|Gp) of WQp over C which can be compared to the same for other choices
of λ, τ , and τ̃ . We only require that their Frobenius semi-simplifications WDeτ(ρλ|Gp)Φ-ss be
isomorphic.

(ii) We could equally well state the rationality and independence of λ for Zp(T,M) using the WD
representations WD

(
ρλ|Gp

)
= (rp,λ, Np,λ). We would require that

det
(

1− Frobp T |(kerNp,λ)ρ(Ip)
)

be in E[T ]. By the compatibility imposed on the WD representations for varying λ, the
independence of λ of this determinant is automatic.

Example 1.2. A basic example in the theory is M = Hw(X) where X is a smooth projective
variety over Q. The notation means “take the wth cohomology of X”. This gives a pure motive of
weight w over Q with coefficients in Q as follows.

• HB(M) = Hw(X(C),Q), the singular cohomology with Q-coefficients:

– complex conjugation acts on the pointsX(C) and induces an involution onHw(X(C),Q),

– its Hodge decomposition comes from Hodge theory;

• HdR(M) = Hw
dR(X/Q), the algebraic de Rham cohomology:

– its filtration comes from the degeneration of the Hodge to de Rham spectral sequence
Eij1 = Hj(X,Ωi)⇒ H i+j

dR (X/Q);

• Hλ(M) = Hw
ét(X ×Q Q, Eλ), the λ-adic étale cohomology:

– GQ acts on X ×Q Q and induces an action on Hw
ét(X ×Q Q, Eλ).

1.2 Motivic L-functions

From the data of these realizations, we can define the L-function of M , as well as its “completed”
L-function, its ε-factors, and state a conjectural functional equation.

For each complex embedding τ ∈ JE , we will define the τ -L-function of M a complex-valued
Euler product

L(s,M, τ) =
∏
p

Lp(s,M, τ) (1.7)

convergent for Re(s) sufficiently large, where the product is over all finite places of Q, and the local
τ -L-factor at p is

Lp(s,M, τ) = τ
(
(Zp(T,M))−1

)∣∣∣
T=p−s

(1.8)

(if we fix τ , we may drop it from the notation and refer simply to the L-function of M). We
can consider the L-functions for different τ as one object: an E ⊗Q C ∼= CJE -valued function
L∗(s,M) =(L(s,M, τ))τ∈JE .
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We also want to define a completed L-function by adding local L-factors at infinity, also called
Gamma factors. We may define the τ -Gamma factor of M at ∞, Γ(s,M, τ), (or L∞(s,M, τ)) by
refining the Hodge decomposition of M as follows. The isomorphism E⊗QC ∼= CJE and the Hodge
decomposition on HB(M) induces a Hodge decomposition for τ ∈ JE

HB(M)⊗E,τ C ∼=
⊕
i,j∈Z

H i,j
τ (M) (1.9)

compatible with F∞,1 such that

HB(M)⊗Q C =
⊕
τ∈JE

HB(M)⊗E,τ C (1.10)

For τ ∈ JE , define
hi,jτ (M) = dimCH

i,j
τ (M) (1.11)

and for ε ∈ {0, 1}, let
hi,i,ετ (M) = dimCH

i,i
τ (M)F∞=(−1)i+ε . (1.12)

Remark 1.3. These numbers are, in fact, independent of τ , which can be seen by comparing with
the de Rham realization which is independent of τ .

These numbers determine the τ -Gamma factor as follows. Let

ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s). (1.13)

Define

Γ(s,M, τ) :=

∏
i<j

ΓC(s− i)h
i,j
τ

×
∏
i=j

∏
ε∈{0,1}

ΓR(s− i+ ε)h
i,i,ε
τ

 . (1.14)

The completed τ -L-function of M is defined as

Λ(s,M, τ) = Γ(s,M, τ)L(s,M, τ) (1.15)

for Re(s) sufficiently large. Again, these can be packaged up for all τ as Λ∗(s,M).

Remark 1.4. One can define the local ε-factors everywhere as in [Ta79, §3], define the global
ε-factor as the product of the local ones, and obtain the following conjecture.

Conjecture 1.5. For each τ ∈ JE,

Λ(s,M, τ) = ε(s,M, τ)Λ(1− s,M∨, τ). (1.16)

1.3 Deligne’s rationality conjecture

Definition 1.6. An integer n is critical for M if neither Γ(s,M, τ), nor Γ(1− s,M∨, τ), has a pole
at s = n. By remark 1.3, this definition is independent of τ ∈ JE . The motive is called critical if
s = 0 is critical for M .

1Since F∞ is E-linear.
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Remark 1.7.

(i) If there is an i such that hi,i,0 6= 0 6= hi,i,1, then no integers are critical for M .

(ii) In [G89], Greenberg makes the following conjecture: if p is ordinary for M , then

corankΛ SelQ∞(Hp(M)⊗Qp/Zp) = order of the pole of Γ(s,M) at s = 1.

Theorem 1 of loc. cit. states that if M is pure, then the inequality ≥ holds.

From now on, assume M is critical and pure of weight w. Thus, if w is even, this forces
F∞ to act as a scalar (either +1 or −1) on H

w
2
,w
2 (M). Let H±B (M) := HB(M)F∞=±1 and let

d±(M) := dimCH
±
B (M). Since F∞ interchanges H i,j(M) and Hj,i(M) and acts as a scalar on

H i,i(M), one of d±(M) is ∑
i>j

hi,j

and the other is ∑
i≥j

hi,j .

This then picks out F+ and F− in {F idR}. Let H±dR(M) := HdR(M)/F∓. The isomorphism I∞
then induces isomorphisms

I± : H±B (M)⊗Q C −→ HB(M)⊗Q C I∞−→ HdR(M)⊗Q C −→ H±dR(M)⊗Q C. (1.17)

Pick E-rational bases of H±B (M) and H±dR(M) and let

c±∞(M) := det I± ∈ (E ⊗Q C)× (1.18)

which is well-defined up to an element in E×. Deligne’s conjecture on the rationality of special
values of L-functions is then the following.

Conjecture 1.8. Suppose M is critical and L∗(0,M) 6= 0, then

L∗(0,M) ∼
E
c+
∞(M), (1.19)

where ∼
E

means equal up to multiplication by an element of E×.

1.4 Example: Tate motives Q(n)

Let’s begin with Q(1), the Tate motive. It is a motive over Q with coefficients in Q. But what should
it be? Well, we know what we want its `-adic realizations to be: the `-adic cyclotomic character
Q`(1). This is the `-adic Tate module of Gm/Q, i.e. the dual of the étale H1. This suggests that
Q(1) is “H1(Gm)”. In fact, we can view this as the cohomology of a smooth projective variety.

Lemma 1.9. H1(Gm) = H2(P1)∨.
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Sketchy justification. Cover P1 by U := P1 \ {0} and V := P1 \ {∞}, and note that U ∩ V = Gm.
Mayer–Vietoris gives the exact sequence

H1(U)⊕H1(V ) −→ H1(U ∩ V ) −→ H2(P1) −→ H2(U)⊕H2(V ).

The terms on either end vanish which yields the dual of the isomorphism we stated.

So, Q(1) is the dual of the motive H2(P1), and hence is pure of weight −2. What is its Betti
realization? It’s H1(C×,Q) which is a one-dimensional Q-vector space generated by the counter-
clockwise circle γ0 around the origin. Complex conjugation flips the complex plane across the real
line, so it reverses the orientation of γ0, i.e. F∞ = −1. A standard fact about the cohomology of
projective space says that

Hj(Pn
C,ΩX/C) =

{
0, i 6= j
C, i = j,

(1.20)

(see e.g. [Har-AG, Exercise III.7.3]). Thus, the Hodge decomposition is

HB(Q(1))⊗Q C = H−1,−1(Q(1)).

This forces the de Rham realization to be a one-dimensional Q-vector space whose filtration is
determined by gr−1

dR = Q. Of course, the de Rham realization is just the dual of H1
dR(Gm), the

latter being generated by the differential ω0 = dz
z .

Then, for n > 0, we define Q(n) := Q(1)⊗n, and for n < 0, Q(n) := (Q(1)∨)⊗n. For Q(0) = Q,
we can either take Q(1)⊗Q(−1), or the motive H0(Spec Q). The weight of Q(n) is −2n.

What integers are critical for Q(n)? Well, the Hodge decomposition of Q(n) is just H−n,−n

and F∞ = (−1)n = (−1)−n+ε, so ε = 0. Therefore,

Γ(s,Q(n)) = ΓR(s+ n).

Accordingly, Γ(1− s,Q(n)∨) = ΓR(1− s+ n). Thus, the critical integers for Q(n) are

−n+ (negative odd)

and
−n+ (postive even).

So, Q(n) is critical if, and only if, n is negative odd or positive even. Note that L(0,Q(n)) = ζ(n),
so Deligne’s conjecture is about the rationality of these values of the Riemann zeta function in this
case.

What are the periods?

• If n is negative odd, then F∞ = −1, so H+
B (Q(n)) = 0, so c+(M) = 1. This agrees with the

fact that ζ(negative odd) ∈ Q.

• If n is positive even, then F∞ = 1, so H+
B (Q(n)) = HB(Q(n)), H+

dR(Q(n)) = HdR(Q(n)),
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and I+ = I∞. The complex comparison isomorphism I∞ for Q(1) is given by the pairing

H1(C×,C)×H1
dR(C×) −→ C

(γ, ω) 7→
∫
γ
ω.

A basis for HB(Q(n)) is γ⊗n0 and a basis for HdR(Q(n)) is ω∨,⊗n0 . Pairing γ⊗n0 with ω⊗n0 gives(∫
γ0

dz

z

)n
= (2πi)n.

So, the image of γ⊗n0 under I∞ is the linear functional on H1
dR(Gm)⊗n which sends ω⊗n0 to

(2πi)n, whereas ω∨,⊗n0 sends it to 1. Thus,

det I+ = c+
∞(M) = (2πi)n.

Thus, Deligne’s conjecture is verified in this case, since we know that, for n positive even,

ζ(n) ∼
Q
πn.

1.5 Example: Artin motives

Another basic example is that of motives arising from Artin representations of GQ. Of particular
importance to us will be the rank 1 examples as they correspond to Dirichlet characters, and twisting
L-values by Dirichlet characters is a fundamental operation in the theory of p-adic L-functions.

Let ρ : GQ → AutE(V ) be an Artin representation, i.e. E is some number field and V is a
d-dimensional vector space over E, in particular im ρ is finite. Let [ρ] denote the motive over Q
with coefficients in E associated to ρ. What are its realizations?

Proposition 1.10.

(i) HB([ρ]) = V with F∞ = ρ(Frob∞) and

H i,j([ρ]) =
{
V ⊗Q C, if i = j = 0
0, otherwise,

(ii) HdR([ρ]) = (V ⊗Q Q)GQ with gr0
dR = HdR([ρ]),

(iii) Hλ([ρ]) = V ⊗E Eλ,

(iv) the isomorphism I∞ is the inverse of the map

(V ⊗Q Q)GQ ⊗Q C −̃→ V ⊗Q C
(v ⊗ α)⊗ z 7→ v ⊗ ι∞(α)z.

In particular, [ρ] is a pure motive of weight 0.
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Sketch of part (iv). We provide suggestive evidence for obtaining part (iv) from the Betti and de
Rham realizations. Since H1(GQ,GL(d,Q)) = 1, (V ⊗Q Q)GQ is a d-dimensional Q-vector space
and there is a canonical isomorphism of GQ-modules

(V ⊗Q Q)GQ ⊗Q Q −̃→ V ⊗Q Q
(v ⊗ α)⊗ β 7→ v ⊗ αβ

where GQ acts only on the Q factor on both sides. The extension of scalars to C, via ι∞, of this
canonical map would certainly seem like a good thing for (the inverse of) I∞ to be.

Remark 1.11. We won’t get into the proof of this proposition, but we will make a few leading
statements, in particular addressing the reason we call it a proposition as opposed to a definition.
To start off, how does one find a “geometric avatar” of an Artin representation? Here’s one way.
As noted, im ρ is a finite set, and it has an action of GQ. Grothendieck’s version of Galois theory
states that there’s an equivalence of categories between finite GQ-sets and finite étale Q-algebras
(i.e. finite products of number fields). The correspondence is the following: to a finite GQ-set S,
associate the ring of GQ-invariant functions S → Q; to a finite étale Q-algebra A, associate the
finite GQ-set Hom(A,Q) (i.e. the Q-points of SpecA). For example, taking A = F a Galois number
field, the corresponding GQ-set is JF with GQ acting through Gal(F/Q). This gives the regular
representation of Gal(F/Q).

To an Artin representation, we’ve attached a zero-dimensional variety X over Q, and we could
suspect that all Artin representations could be found in the cohomology of zero-dimensional varieties
over Q (necessarily in H0). Since dimQH

0(X(C),Q) = the number of connected components of
X(C), we see that Q is the only finite étale Q-algebra whose H0 will give a rank 1 motive over
Q. Thus, in simply taking cohomology of zero-dimensional varieties over Q, we fail to obtain, for
example, the non-trivial Artin characters over Q. To see an instance of what is going on, consider
F = Q(

√
d), for d a negative fundamental character, let χd =

(
d
·
)

be its quadratic character,
and let rd be its regular representation. It is easy to verify that imχd ∼= im rd as GQ-sets. Can
this be fixed? Yes. By using correspondences. The idea behind motives is that they should be
those pieces of the cohomology of smooth projective varieties that can be cut out by algebraic
correspondences. Applying this to the situation at hand, one can, with some work, find that every
Artin representation factoring through Gal(F/Q) can be found inside H0(SpecF ). One could then
prove proposition 1.10 by studying the various cohomologies of SpecF . Perhaps this remark will
morph into a proof in a subsequent version of these notes.

We should also remark that since we have taken geometric Frobenii, L(s, [ρ]) = L(s, ρ∨), where
the latter is the Artin L-function of the contragredient of ρ.

Now, let [ρ](n) := [ρ] ⊗ (Q(n)⊗Q E). It is pure of weight −2n, with Hodge decomposition
H−n,−n. What are its Γ-factors and its critical integers? The answer splits up into three cases.

• ρ is even (i.e. ρ(Frob∞) = 1): then for [ρ], F∞ = 1, so for [ρ](n), F∞ = (−1)n = (−1)−n+0,
so ε = 0, and h−n,−n,0τ = d. Its Γ-factor at τ ∈ JE is thus

Γ(s, [ρ](n), τ) = ΓR(s+ n)d.
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Accordingly, it has the same critical integers as Q(n), i.e.

−n+ (negative odd)

and
−n+ (positive even).

Thus, [ρ](n) is critical if, and only if, n is negative odd or positive even (in particular, [ρ] is
not critical).

• ρ is odd (i.e. ρ(Frob∞) = −1): then for [ρ], F∞ = −1, so for [ρ](n), F∞ = (−1)n+1 =
(−1)−n+1, so ε = 1, and h−n,−n,1τ = d. Its Γ-factor at τ ∈ JE is thus

Γ(s, [ρ](n), τ) = ΓR(s+ n+ 1)d.

It therefore has “more” critical integers than in the even case:

−n+ (positive odd)

and
−n+ (non-positive even).

Thus, [ρ](n) is critical if, and only if, n is positive odd or non-positive even (in particular, [ρ]
is critical).

• if ρ is neither even nor odd, there are no critical points by remark 1.7(i).

1.5.1 Special case: Characters

In this section, we restrict to the case of characters ρ : GQ → E× and determine their periods. Fix
i a square root of −1.2 This breaks up into two cases based on whether F∞ = ±1.

• ρ and n have opposite parity (ρ even, n odd (negative), or ρ odd, n even (non-positive)): then
F∞ = −1, so H+

B ([ρ](n)) = 0, so
c+
∞([ρ](n)) = 1.

• ρ and n have the same parity (ρ even, n even (positive), or ρ odd, n odd (positive)): then
F∞ = 1, so H+

B ([ρ](n)) = HB([ρ](n)) with basis 1⊗γ⊗n0 , and H+
dR([ρ](n)) = HdR([ρ](n)) with

basis gi,ρ ⊗ ω∨,⊗n0 where gi,ρ is the Gauss sum of the following lemma.

Lemma 1.12. Let fρ ∈ Z be the conductor of ρ and let

gi,ρ :=
∑

a∈(Z/fρ)×

ρ(a)⊗ ι−1
∞ (exp(2πia/fρ)) ∈ E ⊗Q Q.

Then, gi,ρ is a basis of HdR([ρ]) = (V ⊗Q Q)GQ.

2We introduce this choice in our notation because it will be used when discussing the conjectures of Coates and
Perrin-Riou.
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Proof. The action of GQ on gi,ρ simply permutes the factors.

The inverse of the comparison isomorphism for [ρ] is (E ⊗Q Q)GQ ⊗Q C→ E ⊗Q C given by∑
a∈(Z/fρ)×

ρ(a)⊗ ι−1
∞ (exp(2πia/fρ))⊗ 1 7→

∑
a∈(Z/fρ)×

ρ(a)⊗ ι∞
(
ι−1
∞ (exp(2πia/fρ))

)
,

so, for [ρ](n) in the basis above

c+
∞,i([ρ](n)) = det I+ = det I∞ = Gi(ρ)−1(2πi)n,

where
Gi(ρ) :=

∑
a∈(Z/fρ)×

ρ(a)⊗ exp(2πia/fρ) ∈ E ⊗Q C

(independent of ι∞). Actually, both [D79] and [Co91] use the following period

δi(ρ)(2πi)n

where
δi(ρ) := G−i(ρ−1).

They can do this because for every τ ∈ JE ,

τ(Gi(ρ))τ(Gi(ρ)) = fρ ∈ Q

and
τ(G−i(ρ−1)) = τ(Gi(ρ)),

so
δi(ρ) ∼

Q
Gi(ρ)−1.

Remark 1.13. By class field theory, this example also covers the case of Dirichlet characters.
Specifically, let χ : (Z/N)× → C× be a primitive Dirichlet character. There is a canonical iso-
morphism from the ray class group C`N∞Q to (Z/N)×. Furthermore, the reciprocity map pro-
vides an isomorphism C`N∞Q →̃Gal(Q(µN )/Q). These two isomorphisms then give ρχ : GQ →
Gal(Q(µN )/Q)→ C× making the following diagram commute

(Z/N)× // C×

C`N∞Q

o

OO

∼
rec

// Gal(Q(µN )/Q)

ρχ

OO

We remark that under our convention for the reciprocity map, L(s, χ) = L(s, ρχ−1) = L(s, [ρχ])
(where the first object is the usual Dirichlet L-function of χ). Accordingly, we define [χ] := [ρχ].
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1.5.2 Special case: SpecF

In this section, we restrict to the case [ρ] = H0(SpecF ), which is the regular representation of
Gal(F/Q) when F/Q is Galois. For any F , we have

L(s, ρ) = ζF (s)

the Dedekind zeta function of F . By Grothendieck’s Galois theory, we find that we are dealing
with the Galois representation

ρ : GQ −→ AutQ(V )

where V = QJF with GQ acting by permutations on JF . In particular, we can identify HdR([ρ])
with F via

F −̃→ HdR([ρ]) ⊆ QJF ⊗Q Q
a 7→

∑
τ∈JF

eτ ⊗ τ(a),

where eτ is the vector with a 1 in the τ -component and zeroes elsewhere. The inverse of I∞ is thus
given by

F ⊗Q C −̃→ QJF ⊗Q C −̃→ CJF

a⊗ 1 7→
∑
τ∈JF

eτ ⊗ τ(a) 7→ (τ(a))τ∈JF .

The vectors eτ form a rational basis of HB([ρ]) and as a rational basis of HdR([ρ]) = F we take an
integral basis {a1, . . . , ad} of F/Q. It is then clear that the determinant of I∞ in this basis is the
inverse of the determinant of the matrix whose (i, τ)-component is τ(ai). Thus,

det I∞ =
1√
|∆F |

(1.21)

where ∆F is the absolute discriminant of F .
But when is [ρ](n) critical? Not very often in fact. Since F∞ = ρ(Frob∞), we see that unless F

is totally real, F∞ will act on JF with both eigenvalues ±1 showing up, i.e. unless F is totally real,
ρ is neither even nor odd and hence has no critical points. Let’s not be too disappointed though
since the functional equation and Gamma factors of the Dedekind zeta function imply that for F
not totally real ζF (n) = 0 for all negative integers. Indeed, letting r1 (resp. r2) denote the number
of real (resp. complex) places of F , then the Gamma factor is

Γ(s, [ρ]) = ΓR(s)r1+r2ΓR(s+ 1)r2 ,

the functional equation is
Λ(s, [ρ]) =

√
|∆F |

1−2s
Λ(1− s, [ρ]).

Now, let’s consider the case where F is totally real. Then ρ is even, so [ρ](n) is critical if, and
only if, n is negative odd or positive even. Again, one can see that ζF (n) is automatically zero at
negative even integers. If n is negative odd, then F∞ = −1, so c+

∞([ρ](n) = 1. On the other hand,
when n is positive even, F∞ = 1 and I+ = I∞. Using the above calculation of det I∞ for [ρ], we
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find that
c+
∞([ρ](n)) =

(2πi)n√
|∆F |

, for n positive even.

What a coincidence! A result due to Siegel shows that ζF (n) ∈ Q× for negative odd n. And the
functional equation then confirms the rationality of ζF (n)/c+

∞([ρ](n)) for n positive even.

Appendix: Properties of the Gamma function

In this appendix, we would like to list some of the well-known properties of the function Γ(s) and
translate them into properties of ΓR(s) and ΓC(s).

To begin, there is the duplication formula

Γ(s)Γ(s+ 1/2) = 21−2s√πΓ(2s) (1.22)

which yields the following.

Lemma 1.14.
ΓR(s)ΓR(s+ 1) = ΓC(s). (1.23)

Proof.

ΓR(s)ΓR(s+ 1) = π−
s
2 Γ
(s

2

)
π
−s−1

2 Γ
(
s+ 1

2

)
= π−s−

1
2 21−s√πΓ(s)

= 2(2π)−sΓ(s)
= ΓC(s).

Secondly, there is the functional equation

Γ(s)Γ(1− s) =
π

sin(πs)
. (1.24)

Applying this to ΓC(s) yields

ΓC(s)ΓC(1− s) = 2(2π)−sΓ(s)2(2π)s−1Γ(1− s)

=
4

2π
π

sin(πs)

=
2

sin(πs)
. (1.25)

We obtain the following.

Lemma 1.15. For all n ∈ Z,

ΓC(s− n)ΓC(1− s+ n) = (−1)n
2

sin(πs)
. (1.26)
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Proof. By (1.25),

ΓC(s− n)ΓC(1− s+ n) =
2

sin(π(s− n))

=
2

sin(πs) cos(−πn) + sin(πn) cos(πs)

=
2

sin(πs) cos(−πn)

= (−1)n
2

sin(πs)
.

We can give a more symmetric form to the functional equation.

Lemma 1.16. For ε ∈ {0, 1}, let

ΓC,ε(s) = ΓC(s) cos
(π

2
(s− ε)

)
.

Then,
1

ΓC,ε(s)
= ΓC,ε(1− s). (1.27)

Proof. For ε = 0,

1
ΓC,0(s)

=
1

ΓC(s) cos
(
π
2 s
)

=
2 sin

(
π
2 s
)

ΓC(s) sin(πs)
(double angle formula)

=
ΓC(1− s) sin(πs)2 sin

(
π
2 s
)

2 sin(πs)
(by (1.25)).

The claim follows from the easy fact that

sin
(π

2
s
)

= cos
(π

2
(1− s)

)
. (1.28)

For ε = 1,
1

ΓC,1(s)
=

1
ΓC(s) cos

(
π
2 (s− 1)

)
=

1
ΓC(s) sin

(
π
2 s
) (by (1.28))

=
ΓC(1− s) sin(πs)

2 sin
(
π
2 s
) (by (1.25))

= ΓC(1− s) cos
(
π
2 s
)

(double angle formula).
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The claim follows from the easy fact that

cos
(π

2
s
)

= cos
(π

2
(1− s− 1)

)
.

For ΓR(s), the situation is more tedious. The following lemma gives some useful relations.

Lemma 1.17. For ε ∈ {0, 1},

ΓR(s+ ε)
ΓR(1− s+ ε)

= ΓC(s) cos
(π

2
(s− ε)

)
, (1.29)

hence, for all n ∈ Z,

ΓR(s− n+ ε)
ΓR(1− s+ n+ ε)

=
{

(−1)(n+ε)/2ΓC(s− n) cos
(
π
2 s
)
, n ≡ ε (mod 2)

(−1)(n+ε−1)/2ΓC(s− n) sin
(
π
2 s
)
, n 6≡ ε (mod 2).

(1.30)

Proof. We being by proving the first relation. For ε = 0,

ΓR(s)
ΓR(1− s)

=
π−s/2Γ(s/2)

π(s−1)/2Γ((1− s)/2)

=
√
πΓ(s/2)Γ((s+ 1)/2) sin(π(1− s)/2)

πs+1
(by (1.24))

=
√
π21−s√πΓ(s) sin(π(1− s)/2)

πs+1
(by the duplication formula)

= ΓC(s) cos
(
π
2 s
)
,

as desired, where we have used the simple identity

sin
(π

2
(1− s)

)
= cos

(π
2
s
)
.

For ε = 1,

ΓR(s+ 1)
ΓR(1− s+ 1)

=
π−(s+1)/2Γ((s+ 1)/2)

π(s−1−1)/2Γ((1− s+ 1)/2)

=
√
πΓ(s/2)Γ((s+ 1)/2) sin(πs/2)

πs+1
(by (1.24))

=
√
π21−s√πΓ(s) sin(πs/2)

πs+1
(by the duplication formula)

= ΓC(s) cos
(
π
2 (s− 1)

)
(by (1.28)).
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Now, for n ≡ ε (mod 2), plug s− n into (1.29) to obtain

ΓR(s− n+ ε)
ΓR(1− s+ n+ ε)

= ΓC(s− n) cos
(π

2
(s− (n+ ε))

)
= ΓC(s− n)

(
cos
(π

2
s
)

cos
(
−π

2
(n+ ε)

)
− sin

(π
2
s
)

sin
(
−π

2
(n+ ε)

))
= ΓC(s− n) cos

(π
2
s
)

cos
(
−π

2
(n+ ε)

)
= ΓC(s− n) cos

(π
2
s
)

(−1)(n+ε)/2,

as desired.
Similarly, for n 6≡ ε (mod 2),

ΓR(s− n+ ε)
ΓR(1− s+ n+ ε)

= ΓC(s− n) cos
(π

2
(s− (n+ ε))

)
= ΓC(s− n)

(
cos
(π

2
s
)

cos
(
−π

2
(n+ ε)

)
− sin

(π
2
s
)

sin
(
−π

2
(n+ ε)

))
= ΓC(s− n) sin

(π
2
s
)

sin
(π

2
(n+ ε)

)
= ΓC(s− n) sin

(π
2
s
)

(−1)(n+ε−1)/2.

2 The conjecture of Coates and Perrin-Riou

2.1 Notation and conventions

Fix a prime p, an algebraic closure Qp of Qp, and an embedding ιp : Q ↪→ Qp. Let Cp be the
completion of Qp and fix an isomorphism ι : C→̃Cp making the diagram

Qp
� � // Cp

Q � � ι∞ //
?�

ιp

OO

C

oι

OO

commute, where ι∞ is the embedding fixed in §1. It will be convenient to denote by i a choice of a
square root of −1, so we do.

We will be using ε-factors in this section, so let us fix some choices of data. Let dx∞ be the
usual measure on R, and for finite places v, let dxv be the Haar measure on Qv giving Zv measure
1. Depending on the choice i, fix the additive character ψ∞,i of R given by

ψ∞,i(x) := exp(2πix).

For a finite place v of Q, let
ψv,i(x) := exp(−2πix)
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under the identification of Qv/Zv with the v-primary subgroup of Q/Z. Then, for each place v of
Q and each τ ∈ JE , one has Deligne’s ε-factor

εv(s,M, i, τ)

as defined in [D73] (see also [D79, §5] or [Ta79, §3]).
Let Q+

∞ be the maximal totally real subfield of Q(µp∞) and let Γ+ := Gal(Q+
∞/Q). Let

χp : GQ → Z×p be the p-adic cyclotomic character. Recall that all algebraic Q×p -valued characters
of GQ are of the form χnpχ for n ∈ Z and χ finite order. Such a character factors through Γ+ if,
and only if, χ has p-power conductor and χ(Frob∞) = (−1)n. We denote X+

alg the collection of such
characters. If ψ ∈ X+

alg, let nψ ∈ Z and χψ be such that ψ = χ
nψ
p χψ with χψ finite order. We use

ιp to identify finite order characters valued in Q×p with those valued in Q×. Then, ψ gives rise to
a motive over Q with coefficients in Eψ := Q(χψ) defined by

[ψ] := (Q(nψ)⊗Q Eψ)⊗ [χψ].

Given a motive M over Q with coefficients in E, its twist by ψ is the motive over Q with coefficients
in E(χψ)

M(ψ) := (M ⊗E E(χψ))⊗
(
[ψ]⊗Eψ E(χψ)

)
.

2.2 Introductory remarks

Given a motive M that is good and ordinary at p and critical, Coates and Perrin-Riou formulate
a conjecture on the existence and uniqueness of a p-adic L-function that interpolates L-values of
critical twists of M by characters in X+

alg. They also describe the poles this p-adic L-function should
have and the p-adic functional equation it satisfies. These conjectures are described in a series of
papers (see esp. [Co91]). The general idea is to modify c+

∞(M) to Ω∞(M) and to try to interpolate
values

Λ(∞,p)(0,M(ψ))
Ω∞(M)

where the the subscript (∞, p) on Λ indicates that the Euler factors at∞ and p have been modified.
The modification at ∞ keeps track of the periods of the Tate twists, while the modification at p
does the same for the twists by finite-order p-power conductor characters χ. The modification at
p also serves to regularize the p-adic distribution one obtains. One must do these things while
preserving the functional equation.

Since these several modifications are made partially to take into account the change in the
periods under twists, we record here the following lemma.

Lemma 2.1. Let ψ = χnpχ ∈ X+
alg (with χ finite order). Suppose that M is a critical motive with

coefficients in E ⊇ Eψ and suppose M(ψ) is also critical. Then

c+
∞(M(ψ)) ∼

E
c+
∞(M)

(
(2πi)nδi(χ)

)d+(M)
. (2.1)
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The main idea is to consider

Rv(s,M, i, τ) :=
Lv(s,M, τ)

εv(s,M, i, τ)Lv(−s,M∨(1), τ)
. (2.2)

where v is a place of Q and τ ∈ JE . One then defines modified Euler factors Ev(s,M, i, τ) at
v =∞, p such that

Rv(s,M, i, τ) =
Ev(s,M, i, τ)

Ev(−s,M∨(1),−i, τ)
. (2.3)

Noting that
εv(s,M, i, τ)εv(−s,M∨(1),−i, τ) = 1 (2.4)

(see e.g. [Ta79, 3.4.7]), we see that

Rv(s,M, i, τ) = Rv(−s,M∨(1),−i, τ)−1. (2.5)

Thus, defining
Λ(∞,p)(s,M, i, τ) :=

∏
v∈{∞,p}

Ev(s,M, i, τ)
∏

v 6∈{∞,p}

Lv(s,M, τ)

gives the functional equation

Λ(∞,p)(s,M, i, τ) =

 ∏
v 6∈{∞,p}

εv(s,M, i, τ)

Λ(∞,p)(−s,M∨(1),−i, τ).3 (2.6)

Mostly, the modification will define Ev(s,M, i, τ) = 1 orRv(s,M, i, τ) so that Ev(−s,M∨(1),−i, τ)
will be the opposite. This has the effect of taking into consideration the dichotomy in the periods
of Q(n) and [χ] based on whether F∞ = ±1.

2.3 Modification of the Euler factor at ∞

As in the case of the Gamma factors (1.14), we define E∞(s,M, i, τ) as a product over pieces of the
Hodge decomposition. Specifically, for each factor U of the Hodge decomposition define a factor as
follows

• if U = H i,j
τ ⊕Hj,i

τ with i < j, define

E∞(s, U, i, τ) :=
(
i−sΓC(s− i)

)hi,jτ ,

• if U = H i,i
τ with i ≥ 0, define

E∞(s, U, i, τ) := 1,

• if U = H i,i
τ with i < 0, define

E∞(s, U, i, τ) := R∞(s, U, i, τ).
3The switch i to −i here is one of the main reasons to carry around this choice of i.
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Then,

E∞(s,M, i, τ) =
∏

U⊆Hi,j
τ

E∞(s, U, i, τ) (2.7)

=
∏
i<j

(
i−sΓC(s− i)

)hi,jτ ∏
i<0

∏
ε∈{0,1}

ΓR(s− i+ ε)h
i,j,ε
τ

iεΓR(1− s+ i+ ε)h
i,j,ε
τ

∏
i≥0

1 (2.8)

(compare with (1.14)).
Let

r(M) :=
∑
i<0

ihi,j .

We then have the following.

Lemma 2.2. Suppose M is critical. Then

E∞(0,M, i, τ) ∼
E

(2πi)r(M)

with the fudge factor independent of i.
If M(ψ) is also critical (and E ⊇ Eψ), then

E∞(0,M(ψ), i, τ) ∼
E
E∞(0,M, i, τ)(2πi)−nψd

+(M).

Let
Λ(∞)(s,M, i, τ) := E∞(s,M, i, τ)L(s,M, τ)

and modify the period as follows

Ω∞,i(M) := c+
∞(M)(2πi)r(M). (2.9)

Write (δi(χ, τ))τ∈JE (resp. (Ω∞,i(M, τ))τ∈JE ) for the image of δi(χ) (resp. Ω∞,i(M)) under E ⊗Q

C ∼= CJE . Assuming M(ψ) is critical, let

Λalg
(∞)(M,ψ, τ) :=

Λ(∞)(0,M(ψ), i, τ)
Ω∞,i(M, τ)δi(χψ, τ)

. (2.10)

This is independent of the choice of i. We obtain the following equivalent form of Deligne’s conjec-
ture for the motive M(ψ).

Conjecture 2.3. Suppose both M and M(ψ) are critical (and E ⊇ Eψ). Then, there is an element
Λalg

(∞)(M,ψ) ∈ E such that

τ
(

Λalg
(∞)(M,ψ)

)
= Λalg

(∞)(M,ψ, τ), for all τ ∈ JE . (2.11)
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2.4 Modification of the Euler factor at p

From now on, we take all our algebraic extensions of Q within Q; in particular, the coefficient field
E. We will then fix τ = ι∞|E ∈ JE and drop it from our notation. The embedding ιp singles out a
prime p of E as well as one of Q. We denote by Gp the decomposition group of the latter and use
ιp to identify Gp with GQp .

Let λ be a finite prime of E coprime to p. There is a process, described in [D73, §8] and
[Ta79, §4], that turns the λ-adic representation ρλ into a Weil–Deligne representation of WQp

over C. Briefly, one restricts ρλ to Gp and then to the Weil group of Qp to obtain a λ-adic
representation of WQp .

4 Grothendieck’s `-adic monodromy theorem allows one to transfer this
to a Weil–Deligne representation (rp,λ, Np,λ) of WQp over Eλ. Picking an extension of ι∞ to Eλ
allows us to transfer this to a Weil–Deligne representation of WQp over C which, by our definition
of motive, is independent on the choice of extension (up to isomorphism). We denote this Weil–
Deligne representation by (rp, Np). The local L-factor and ε-factor at p are defined in terms of
(rp, Np). However, Deligne pointed out in [D79, Remarque 5.2.1] that Rp(s,M, i) is unchanged if
one replaces (rp, Np) with (rp, 0). Coates remarks in [Co91, Lemma 6] that, in fact, it is unchanged
if one further replaces (rp, 0) with (rss

p , 0) (where rss
p is the semi-simplification of rp). The modified

Euler factor Ep(s,M, i) is defined as a product over the irreducible pieces U of rss
p of Ep(s, U, i) as

follows.
By [D73, §4.20], every irreducible representation U of WQp over C is of the form U ∼= ξU ⊗ωs(U)

where ξU (WQp) is a finite group, s(U) ∈ C, and ωs is the character of WQp corresponding to the
character z 7→ |z|s of Q×p under the local reciprocity map Q×p →̃W ab

Qp
. Let Φp denote a choice of

(geometric) Frobenius in WQp (unique up to inertia Ip). Let

Hp(T,U) := det(1− ΦpT |U).

Assume the roots of this polynomial lie in ι∞(Q).5 Though the inverse roots αU,j of Hp(T,U)
depend on the choice of Φp, their p-adic valuation ordp(ιpι−1

∞ αU,j) is independent of this choice
(since the image of inertia is finite, so the eigenvalues that occur are roots of unity, hence have p-
adic valuation 0). In fact, the p-adic valuation of the αU,j only depends on U (since U ∼= ξU⊗ωs(U)).
We denote this valuation by ordp(U) and impose the following assumption on the prime p and the
motive M :

• assume ordp(U) 6= −1/2 for all irreducible U in rss
p .

This assumption won’t be a problem for us, as the ordinarity hypothesis we impose will force
ordp(U) ∈ Z.

For U ⊆ rss
p irreducible, define

Ep(s, U, i) :=
{

1, ordp(U) > −1/2
Rp(s, U, i), ordp(U) < −1/2.

4Technically, one does not restrict to the Weil group, rather one composes with the canonical continuous homo-
morphism ϕ : WQp → GQp .

5We have assumed that det
“

1− ΦpT | (ker Np)
Ip

”
is rational, however, as we are not taking the characteristic

polynomial on the unramified part, we do not know that Hp(T, U) is rational.
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Then, define
Ep(s,M, i) :=

∏
U⊆rssp

irreducible

Ep(s, U, i).

Note that ordp(U∨(1)) = −1− ordp(U), so (2.3) is satisfied.

2.4.1 Example: M good at p

When M is good at p (in the sense that Ip acts trivially on Hλ(M) for all λ coprime to p), there is
a formula for the modified Euler factor in terms of some simple data one usually has lying around.
Let dp(M) be the number of inverse roots α of ι∞(Zp(T,M)) such that ordp(ιpι−1

∞ α) < 0.

Proposition 2.4. Suppose M is good at p and let α run over the inverse roots of ι∞(Zp(T,M)).
Then

Ep(s,M, i) =

 ∏
ordp(α)>−1/2

(1− αp−s)

 ∏
ordp(α)<−1/2

(1− (αp)−1p−s)

Lp(s,M). (2.12)

Furthermore, if χ is a finite order character of Gal(Q(µp∞)/Q) of conductor fχ = pr(χ), then

Ep(s,M(χ), i) = δi(χ, ι∞)−dp(M)f
sdp(M)
χ

 ∏
ordp(α)<−1/2

α

r(χ)

Lp(s,M(χ)). (2.13)

2.5 The conjecture

2.5.1 Ordinarity

We now assume that M is good and ordinary at p. The latter condition is that there is an
exhaustive separated descending Gp-stable filtration F jp of Ep-subspaces of ρp|Gp such that Ip acts
via multiplication by χjp on the jth graded piece grjp := F jp /F

j+1
p . According to Fontaine (see

[PR94, Théorème 1.5]), if ρp is ordinary, then it is semistable (and, a fortiori, Hodge–Tate). The
Hodge–Tate decomposition of ρp is

ρp ⊗Ep Cp
∼=
⊕
j∈Z

Cp(−j)h
j
p .

We call j a Hodge–Tate weight of M at p if hjp 6= 0 (e.g. Q(1) has Hodge–Tate weight −1 at p, for
all p).

We introduce two new assumptions which should really be part of the definition of a motive to
begin with:

• assume that for all j ∈ Z, hjp = hj,w−jι∞ (where w is the weight of M),

• assume ιpZp(T,M) = the characteristic polynomial of the Frobenius on Dst(ρp|Gp).
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The second assumption implies that the number for inverse roots of ιpZp(T,M) with p-adic valua-
tion j equals h−jp . Two important consequences of this are

• ordp α ∈ Z for all inverse roots of all Hp(T,U),

• dp(M) = d+(M).

Applying the second consequence to equation (2.13), shows that a factor of δi(χ, ι∞)−d
+(M) appears

in the modified Euler factor at p of M(χ), accounting for that factor occurring in the period of a
twist given in equation (2.1).

2.5.2 Picking out poles

To pick out the poles that might occur in the p-adic L-function, let

Hcyc
p (M) := Hp(M)

G
Q+
∞ .

With GQ acting on the first factor of Hcyc
p (M)⊗Ep Cp, there is an isomorphism of GQ-modules

Hcyc
p (M)⊗Ep Cp

∼=
⊕

ψ∈B(M)

ψe(ψ)

that defines B(M) ⊆ X+
alg and e(ψ) ∈ Z≥1.

Remark 2.5.

(i) If χnpχ ∈ B(M) (with χ of finite order), then n = −w/2.

(ii) There is a conjecture that e(ψ) is the order of the pole of L(s,M(ψ−1)) at s = 1 (and that
L(s,M(ψ−1)) is holomorphic outside s = 1).

2.5.3 Statement of the conjecture

Conjecture 2.6 (Coates–Perrin-Riou, [Co91]). Suppose M is critical good and ordinary at p.
Then,

(i) for each choice of c+
∞(M) (chosen up to E×), there is a unique pseudo-measure µc+∞(M) on

Γ+ such that for all ψ ∈ X+
alg satisfying

(a) M(ψ) is critical,

(b) ψ−1 6∈ B(M),

(c) ψ 6∈ B(M∨(1)),

one has ∫
Γ+

ψdµc+∞(M) =
Λ(∞,p)(s,M, i)
Ω∞,i(M, ι∞)

(2.14)
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(ii) there is a non-zero b ∈ Zp such that, for any choices of γψ, γη ∈ Γ+, one has

b

 ∏
ψ∈B(M)

(
ψ−1(γψ)− γψ

)e(ψ)

 ∏
η∈B(M)

(η(γη)− γη)e(η)

µc+∞(M) ∈ ZpJΓ+K. (2.15)

2.5.4 p-adic functional equation

If we suppose that µc+∞(M) and µc+∞(M∨(1)) exist (for some choice of c+
∞(M∨(1))), then they satisfy

a p-adic functional equation. In order to state this, define an involution on ZpJΓ+K by(∑
γ

aγγ

)#

=
∑
γ

aγγ
−1.

Let rec(fM ) be the Artin symbol of the conductor of ρp in Γ+ and let

ε(∞,p)(M) := (−1)r(M
∨(1)) ε(0,M, ι∞)

ε∞(0,M, i, ι∞)
Ω∞,i(M, ι∞)

Ω∞,i(M∨(1), ι∞)
.

Proposition 2.7. One has

µc+∞(M) = ε(∞,p)(M) rec(fM )#µ#

c+∞(M∨(1))
. (2.16)

2.5.5 Example: Dirichlet characters

Let χ : GQ → E× be a finite order character of conductor N (i.e. N is the smallest positive integer
such that χ factors through Gal(Q(µN )/Q)). In this example, we will make explicit what the
Coates–Perrin-Riou conjecture says about the p-adic L-function of the motive M := [χ].

First off, according to §1.5, M is critical if, and only if, χ is odd, so we restrict to this situation.
Secondly, the assumption that M is ordinary at p implies that p - N , so we fix such a prime. Let
ψ ∈ X+

alg. When is M(ψ) critical? This again follows from §1.5. By definition χψ(Frob∞) = (−1)nψ ,
so χχψ and nψ have opposite parity. Thus, M(ψ) is critical if, and only if, nψ ≤ 0.

Remark 2.8. The Coates–Perrin-Riou conjecture for M will say that the L(nψ, χχψ) can be
interpolated p-adically for nψ ≤ 0 and χχψ of the opposite parity as nψ. These parity conditions
ensure that L(nψ, χχψ) 6= 0. For nψ ≤ 0 and of the same parity as χχψ, L(nψ, χχψ) = 0.

So, let ψ ∈ X+
alg with nψ ≤ 0. For M , H0,0(M) 6= 0, so H−nψ ,−nψ(M(ψ)) 6= 0. Since −nψ ≥ 0,

E∞(s,M(ψ), i) = 1, r(M) = 0

c+
∞(M) = 1, Ω∞,i(M) = 1.

For a finite order character η, let fη = pr(η)f′η where p - f′η. Since p - N , M is good at p, so we
can use proposition 2.4. Note that

χχnp (Frobp) = p−nχ(Frobp)
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so
Zp(T,M(ψ)) = 1− χχψ(Frobp)p−nψT.

Let α be the inverse root χχψ(Frobp)p−nψ of ι∞(Zp(T,M(ψ)), then ordp ιpι−1
∞ α = −nψ ≥ 0, so

dp(M(ψ)) = 0. By proposition 2.4,

Ep(s,M(ψ), i) =
{

(1− χ(Frobp)p−nψp−s)Lp(s,M(ψ)), r(χψ) = 0,
1 · Lp(s,M(ψ)), r(χψ) ≥ 1,

= 1 (2.17)

Indeed, when r(χψ) = 0, Lp(s,M(ψ)) = (1− χ(Frobp)p−nψp−s)−1, and when r(χψ) ≥ 1, the local
L-factor is 1 (since χχψ is ramified at p). Thus,

Λ(∞,p)(s,M, i) = L(p)(s, [χ]) = (1− χ(Frobp)p−s)L(s, [χ]) (2.18)

and

Λ(∞,p)(s,M(ψ), i) = L(p)(s, [χ](ψ))

=
{ (

1− χ(Frobp)p−(s+nψ)
)
L(s+ nψ, [χ]), r(χψ) = 0,

L(s,M(ψ)), r(χψ) ≥ 1,
(2.19)

where L(p)(s,M) is the L-function with the Euler factor at p removed.
Since p - N , Hcyc

p (M) = 0, so B(M) = ∅. Similarly, B(M∨(1)) = ∅. Thus, the following is the
Coates–Perrin-Riou conjecture.

Conjecture 2.9 (Coates–Perrin-Riou conjecture for finite order characters). Let χ be an odd finite
order character of conductor N and let p - N be a prime number. Then, there is a unique measure
µχ on Γ+ such that for all ψ ∈ X+

alg with nψ ≤ 0∫
Γ+

ψdµχ = L(p)(nψ, χχψ).

Remark 2.10.

(i) The conjecture as stated is for the choice of period c+
∞(M) = 1. It is clear that the full

conjecture (where we don’t fix a period) holds if, and only if, the version stated holds.

(ii) Though the conjecture states the interpolation property at all ψ with nψ ≤ 0, the interpolation
property obtained by fixing either nψ or χψ will uniquely determine a measure. That the full
interpolation property is satisfied would then follow from congruence properties of the special
values (i.e. Kummer congruences for generalized Bernoulli numbers).

Since the functional equation (conjecture 1.5) for the archimedean L-function Λ(s, χ) is known,
we get a p-adic functional equation as in proposition 2.7. Let us make explicit what it says.

Note that M∨(1) = [χ−1](1) and χ−1 is also odd.

Lemma 2.11. M∨(1)(ψ) is critical if, and only if, nψ ≥ 0.
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Proof. Note that M∨(1)(ψ) = [χ−1χψ](1 + nψ). Now, χχψ and 1 + nψ are of the same parity, so
§1.5 says that M∨(1)(ψ) is critical if, and only if, 1 + nψ > 0, as claimed.

So, let ψ ∈ X+
alg with nψ ≥ 0. If nψ is even, then so is χψ, and χ−1χψ is odd, so for M∨(1)(ψ),

h
−1−nψ ,−1−nψ ,1
ι∞ = 1. But when nψ is odd, χψ is too, so χ−1χψ is even, and hence for M∨(1)(ψ),
h
−1−nψ ,−1−nψ ,0
ι∞ = 1. Thus, letting εψ = 0 or 1 if nψ is ood or even, respectively, we have

Γ(s,M∨(1)(ψ), ι∞) = ΓR(s+ 1 + nψ + εψ).

Since −1− nψ < 0,

E∞(s,M∨(1)(ψ), i) =
ΓR(s+ 1 + nψ + εψ)

iεψΓR(1− (s+ nψ + 1) + εψ)
.

Taking n = −1− nψ in (1.30), and noting that εψ and −1− nψ have the same parity, we get

E∞(s,M∨(1)(ψ), i) = (−1)(εψ−1−nψ)/2i−εψΓC(s+ nψ + 1) cos
(π

2
s
)
. (2.20)

For M∨(1), h−1,−1,1
ι∞ = 1, so

r(M∨(1)) = −1,

c+
∞(M∨(1)) = δi(χ−1)2πi,

and
Ω∞,i(M∨(1)) = δi(χ−1)

i

i
.

We have
Zp(T,M∨(1)(ψ)) = 1− χ−1χψ(Frobp)p−1p−nψT.

Let β be the inverse root χ−1χψ(Frobp)p−(1+nψ) of ι∞(Zp(T,M∨(1)(ψ))), then ordp ιpι−1
∞ β = −1−

nψ ≤ −1, so dp(M∨(1)(ψ)) = 1. By proposition 2.4,

Ep(s,M∨(1)(ψ), i) =

{ (
1− ((χ(Frobp)p)−1p)−1p−(s+nψ)

)
Lp(s,M∨(1)(ψ)), r(χψ) = 0,

δi(χψ, ι∞)−1fsχψ
(
χ(Frobp)p1+nψ

)r(χψ)
Lp(s,M∨(1)(ψ)), r(χψ) ≥ 1,

=


(
1− χ(Frobp)p−(s+nψ)

)
Lp(s+ nψ + 1, [χ−1]), r(χψ) = 0,

fsχψ(χ(Frobp)p
1+nψ)r(χψ)

δi(χψ ,ι∞) , r(χψ) ≥ 1,
(2.21)

Thus,

Λ(∞,p)(s,M∨(1)(ψ), i)
Ω∞,i(M∨(1), ι∞)

=


(
1− χ(Frobp)p−(s+nψ)

)
fsχψ(χ(Frobp)p

1+nψ)r(χψ)

δi(χψ ,ι∞)

 (−1)(εψ−1−nψ)/2i1−εψΓC(s+ nψ + 1) cos(πs/2)
δi(χ−1, ι∞)i

L(s+nψ+1, [χ−1χψ]),

(2.22)
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so,

Λ(∞,p)(0,M∨(1)(ψ), i)
Ω∞,i(M∨(1), ι∞)

=

 (1− χ(Frobp)p−nψ)
(χ(Frobp)p

1+nψ)r(χψ)

δi(χψ ,ι∞)

 (−1)(εψ−1−nψ)/22i1−εψnψ!
(2π)1+nψδi(χ−1, ι∞)i

L(nψ + 1, [χ−1χψ])(2.23)

Unfinished: this can be related to L(−nψ, [χχ−1
ψ ]).

3 The p-adic L-function of a Dirichlet character

3.1 Preliminaries

We collect a few basic facts concerning special values of Dirichlet L-functions.

Definition 3.1. Let χ be a primitive Dirichlet character mod N . The generalized Bernoulli num-
bers belonging to χ are Bk,χ, for k a non-negative integer, given by

N∑
a=1

χ(a)
teat

eNt − 1
=
∞∑
k=0

Bk,χ
tk

k!
. (3.1)

Lemma 3.2. Let χ be a primitive Dirichlet character mod N . Then,

B1,χ =
1
N

N∑
a=1

aχ(a). (3.2)

Proof. First, we find an approximate inverse to (eNt − 1)/t. Consider

1 =
(
N +

N2t

2
+ · · ·

)
(a0 + a1t+ · · · )

= a0N + t

(
a1N +

a0N
2

2

)
· · · .

Thus,
t

eNt − 1
=

1
N
− 1

2
t+ · · ·

and

N∑
a=1

χ(a)
teat

eNt − 1
=

N∑
a=1

χ(a)
(

1
N
− 1

2
t+ · · ·

)
(1 + at+ · · · )

=
N∑
a=1

χ(a)
(

1
N

+ t

(
a

N
− 1

2

)
+ · · ·

)
.
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Since
N∑
a=1

χ(a) = 0,

we get the desired result.

Recall the following definition of the L-function of χ.

Definition 3.3. The L-function of χ is defined for Re(s) > 1 by the Dirichlet series

L(s, χ) =
∞∑
n=1

χ(n)
ns

where χ(n) = 0 if (n,N) > 1. It can be analytically continued to an entire function on C (unless
χ is the trivial character, in which case L(s, χ) = ζ(s) has a simple pole at s = 1).

We remark that L(s, χ) = L(s, [χ]).
We state several standard results without proof.

Theorem 3.4 (Functional equation). Let ε ∈ {0, 1} be given by χ(−1) = (−1)ε. Then,

Λ(s, χ) := Λ(s, [χ]) = ΓR(s+ ε)L(s, χ)

satisfies
Λ(s, χ) = ε(s, χ)Λ(1− s, χ−1)

where
ε(s, χ) := ε(s, [χ]) =

τ(χ)
iεN s

and

τ(χ) =
N∑
a=1

χ(a) exp(2πia/N).

Theorem 3.5. For positive integers k,

L(1− k, χ) = −
Bk,χ
k

(3.3)

and, when k ≡ ε (mod 2),

L(k, χ) = (−1)1+ k+ε
2

τ(χ)
2iεNk

(2π)k
Bk,χ−1

k!
. (3.4)

Proof. We indicate how to derive the second equality from the first using the functional equation
of theorem 3.4. We have that

L(k, χ) =
τ(χ)
iεNk

ΓR(1− k + ε)
ΓR(k + ε)

L(1− k, χ−1).
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By equation (1.30) (with s = 0 and n = −k), when k ≡ ε (mod 2),

L(k, χ) =
τ(χ)
iεNk

(−1)(−k+ε)/2

ΓC(k)
L(1− k, χ−1)

=
τ(χ)
iεNk

(−1)(−k+ε)/2

2(2π)−k(k − 1)!

(
−
Bk,χ−1

k

)
,

as desired.

3.2 Construction using Stickelberger elements

We adapt Iwasawa’s construction in [Iw-LpL, §6] which essentially uses the Stickelberger elements
of cyclotomic fields. Similar things are done in chapter 2 of Lang, in KubertLang, and in Rubin
§3.4.

Let’s start with some notation. For a positive integer N , let GN := Gal(Q(µN )/Q). If a is a
positive integer, let recN (a) ∈ GN be defined by ζ−aN = recN (a)(ζN ) (this is the reciprocity map,
in particular recN (p) = Frobp for p - N). If M |N , let resMN : GM → GN be the map obtained by
restricting the action of σ ∈ GM to Q(µN ). Given χ a primitive Dirichlet character mod N , we also
denote by χ the Galois character on GN given by χ(recN (a)) = χ(a), for (a,N) = 1 (see remark
1.13 for a discussion of our normalizations). This also gives a character, still denoted χ, on GM ,
for N |M , via composition with resMN .

Definition 3.6. Let χ be a primitive Dirichlet character and let N ≥ 2 be an integer. Define the
χ-twisted (shifted) Stickelberger element of level N as

θN,χ :=
N∑
a=1

(a,N)=1

({ a
N

}
− 1

2

)
χ(a) recN (a) ∈ Q(χ)[GN ]

where {·} denotes the fractional part.

Remark 3.7. The usual Stickelberger element of level N is

θN :=
N∑
a=1

{ a
N

}
recN (a) ∈ Q[GN ].

The shift by −1/2 we introduce is so that the θN,χ behave well with respect to the restriction maps
(see lemma 3.9). The twist by χ(a) is mostly for convenience.

The reason we are interested in these Stickelberger elements is the following result.

Lemma 3.8. Let χ be a primitive Dirichlet character. For a Dirichlet character ψ, let χψ denote
the primitive Dirichlet character attached to χψ. If N = fχψ, then

ψ(θN,χ) = B1,χψ = −L(0, χψ). (3.5)
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Proof. We have

ψ(θN,χ) =
1
N

N∑
a=1

(a,N)=1

aχ(a)ψ(recN (a))− 1
2

N∑
a=1

(a,N)=1

χ(a)ψ(recN (a))

=
1
N

N∑
a=1

(a,N)=1

aχ(a)ψ(a)− 1
2

N∑
a=1

(a,N)=1

χ(a)ψ(a)

=
1
N

N∑
a=1

(a,N)=1

aχψ(a)− 1
2

N∑
a=1

(a,N)=1

χψ(a)

= B1,χψ − 0,

(I think the 3rd line is a lie) where the last equality is from lemma 3.2 and the fact that

N∑
a=1

(a,N)=1

χψ(a) =
N∑
a=1

χψ(a) = 0.

The second equality in the statement of the lemma is theorem 3.5.

Thus, the Stickelberger elements are related to the value at s = 0 of Dirichlet L-functions.
We will now proceed to take a limit of twisted Stickelberger elements in order to obtain a p-adic
measure that gives the p-adic L-function of χ.

Lemma 3.9. Let χ be a primitive Dirichlet character of conductor fχ. Let N ≥ 2 be a positive
integer such that fχ|N and let ` be a prime number. Then,

resN`N θN,χ =
{
θN,χ, if `|N,
(1− χ(`) Frob`)θN,χ, if ` - N. (3.6)

Proof. Note that if N |M and (bN + a,M) = 1, then resMN (recM (bN + a)) = recN (a), and, since
fχ|N , χ(bN + a) = χ(a). Thus, if `|N , using the fact that (a,N) = 1 implies (a,N`) = 1, we have

resN`N θN,χ =
N∑
a=1

(a,N)=1

`−1∑
b=0

(
bN + a

N`
− 1

2

)
χ(bN + a) recN (a) (3.7)

=
N∑
a=1

(a,N)=1

(
`−1∑
b=0

(
bN + a

N`
− 1

2

))
χ(a) recN (a).

Now,
`−1∑
b=0

(
bN + a

N`
− 1

2

)
=
`(`− 1)N

2N`
+
`a

N`
− `

2
=

a

N
− 1

2
,
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so the case `|N is done.
Now, suppose ` - N . We may begin as in (3.7), but we must subtract off the terms for which

`|bN + a. We obtain

resN`N θN,χ =
N∑
a=1

(a,N)=1

`−1∑
b=0

(
bN + a

N`
− 1

2

)
χ(bN + a) recN (a)−

N∑
c=1

(c,N)=1

(
c`

N`
− 1

2

)
χ(c`) recN (c`)

= θN,χ − χ(`) recN (`)θN,χ.

Since recN (`) = Frob`, we are done.
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