Quiz 6 - MA 123F - Tuesday, Nov. 2, 2010

Name:

Show your work.

(1) What is
$$\arcsin(1/2)$$
?

(2) Find
$$\frac{d}{dx} \left(\sqrt{\arccos(x)} \right)$$
.

- (3) Let $f(x) = \arcsin(x^3 + 1)$.
- (a) What is the domain of f(x)?
- (b) What is the range of f(x)?
- (c) What is f'(x)?

MA123F-Solutions to Quiz 6

These two conditions are always enough to give the value of arcsin(1/2).] sin of what is 1/2? $sin(T/6) = \frac{1}{2}$ & $-T/6 \le T/6 \le T/2$ so arcsin(1/2) = T/6

(2)
$$\frac{d}{dx} \left(\sqrt{\arccos(x)} \right) = \frac{1}{2 \sqrt{1-x^2}} \frac{d}{\arctan(\cos(x))} \left(\frac{1}{ax} \left(\arccos(x) \right) \right) = \frac{1}{2 \sqrt{1-x^2}} \frac{d}{\arctan(\cos(x))} \left(\frac{1}{ax} \left(\frac{1}{ax} \cos(x) \right) \right) = \frac{1}{2 \sqrt{1-x^2}} \frac{d}{\arctan(\cos(x))} \left(\frac{1}{ax} \cos(x) \right) = \frac{1}{2 \sqrt{1-x^2}} \frac{d}{\arctan(\cos(x))} \left($$

(3) (a) domain of x^3+1 is $(-\infty,\infty)$ (so no restrictions on x are imposed by x^3+1). domain of arcsin(x) is [-1,1], x must satisfy $-1 \le x^3+1 \le 1$ (i) $-1 \le x^3+1$ (ii) $x^3+1 \le 1$ so $-2 \le x^3$ so $-3\sqrt{2} \le x$ so $x^3 \le 0$ so $x \le 0$

so domain of f(x) is -3/2 < x < 0

(b) Since The values of x^3+1 fill up The domain of arcsin(x), the range of arcsin(x^3+1) = range of arcsin(x)

so range of arcsin(x3+1) is
$$[-17/2, 17/2]$$

(c) $f'(x) = \frac{1}{\sqrt{1-(x^3+1)^2}} \cdot \frac{d}{dx}(x^3+1) = \frac{3x^2}{\sqrt{1-(x^3+1)^2}}$