Name:

Show your work.

1. Find the local maxima and minima of $f(x) = x^2 \sqrt{x+3}$ for x > -3.

2. In each case (a), (b) determine whether the limit exists, and if so, determine its value. Show your work.

(a)
$$\lim_{x \to 0} \frac{\ln(1+x) - x}{x}$$

(b)
$$\lim_{x \to \infty} e^{-x} \ln(x)$$

MA123F-Solutions to Quiz 9

1) Critical points:
$$f'(x) = x^{2} \frac{1}{2(x+3)} + 2x\sqrt{x+3} = x^{2} + 4x(x+3) = x(5x+12)$$

(i) $f'(x)=0$: when $x=0$ on $x=-12$

(ii) $f'(x)$ undefined: $f'(x)$ is defined everywhere for $x>-3$

[A+ This point you have two options: option A : The First Derivative test cet's do both.]

Option A : First derive test: $f'(x)$

$$f'(x)=(x+3)$$

$$f'(x)=(x$$

<0 if -12< x <0 >0 if x>0

Optim (B): Second deriv . test:

$$f''(x) = 2\sqrt{x+3}(10x+12) - x(5x^{2}+12) \cdot \sqrt{x+3}$$

$$+(x+3)$$

$$\Delta f''(-\frac{12}{5}) = 2\sqrt{3}5.(-12) - 0$$
 < $\sqrt{50} \times = -\frac{12}{5}$ is a local max

(b) get = 0.00. rewrite, so =
$$\lim_{x\to\infty} \frac{\ln(x)}{e^x} = \frac{\infty}{\infty}$$
, $\lim_{x\to\infty} \frac{(x)}{e^x} = \lim_{x\to\infty} \frac{1}{xe^x}$

L'Hospital's rule = $\frac{1}{\infty}$