
MAT-203 : The Leibniz Rule

by Rob Harron

In this note, I’ll give a quick proof of the Leibniz Rule I mentioned in class (when we

computed the more general Gaussian integrals), and I’ll also explain the condition needed

to apply it to that context (i.e. for infinite regions of integration). A few exercises are also

included.

The Leibniz Rule for a finite region

Theorem 0.1. Suppose f(x, y) is a function on the rectangle R = [a, b]×[c, d] and ∂f
∂y

(x, y)

is continuous on R. Then

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂f

∂y
(x, y)dx.

Before I give the proof, I want to give you a chance to try to prove it using the following

hint: consider the double integral

∫ y

c

∫ b

a

∂f

∂z
(x, z)dxdz,

change the order of integration and differentiate both sides of the ensuing equality.

Proof. Go ahead, give it a try.

Come on...

You sure?

Ok, fine.

So we start off with the equality the hint gives

d

dy

(∫ y

c

∫ b

a

∂f

∂z
(x, z)dxdz

)
=

d

dy

(∫ b

a

∫ y

c

∂f

∂z
(x, z)dxdz

)
.

Then using the fundamental theorem of calculus (d/dt
(∫ t

a
f(x)dx

)
= f(t)), the left-hand

side becomes ∫ b

a

∂f

∂y
(x, y)dx.

Using the other version of the fundamental theorem of calculus (
∫ b

a
F ′(x)dx = F (b)−F (a)),
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the right-hand side becomes

d

dy

(∫ b

a

(f(x, y)− f(x, c))dx

)
,

and the second part of the integrand (f(x, c)) is independent of y, so it’s derivative with

respect to y is 0, thus the right-hand side is

d

dy

(∫ b

a

f(x, y)dx

)
,

as desired.

Exercise: Using this theorem and the chain rule, prove the more general formula

d

dy

∫ g2(y)

g1(y)

f(x, y)dx =

∫ g2(y)

g1(y)

∂f

∂y
(x, y)dx + g′2(y)f(g2(y), y)− g′1(y)f(g1(y), y)

assuming, in addition, that g1 and g2 are differentiable.

Exercise: Compute ∫ 1

0

x− 1

log x
dx.

Hint: Define I(α) :=
∫ 1

0
xα−1
log x

dx for α > 0, and use the Leibniz rule. At some point, you’ll

need that limα→0 I(α) = 0.

The Leibniz Rule for an infinite region

I just want to give a short comment on applying the formula in the Leibniz rule when the

region of integration is infinite. In this case, one can prove a similar result, for example

d

dy

∫ ∞

0

f(x, y)dx =

∫ ∞

0

∂f

∂y
(x, y)dx,

like the one we used in class, but we need to add a condition on f . Basically, we need to

make sure that ∂f/∂y is well-behaved as x goes to infinity. The condition is the following:

there is a positive function g(x, y) that is integrable, with respect to x, on [0,∞), for each

y, and such that |∂f
∂y

(x, y)| ≤ g(x, y) for all (x, y). (In a more general context, this theorem

is a corollary of the Lebesgue Dominated Convergence Theorem).
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