Assignment 7 – Parts 1 & 2 – Math 243

Textbook exercises:¹

Section 10.1: 2, 4, 6, 8, 10, 12

Section 10.2: 18,20 (for these two problems, just find the slopes of the tangent lines, don't sketch anything)

Section 10.3: 18, 24, 26*a*, 26*c*

Other exercises:

- (1) Show that the points of the graph of $r = \sin(\theta)$ lie on a circle of radius 1/2 centered at the point (0, 1/2).
- (2) Plot the set of points whose polar coordinates (r, θ) satisfy $2 \le r \le 3$ and $\pi/4 \le \theta \le 3\pi/4$.
- (3) Find the area of the region bounded in polar coordinates by $0 \le \theta \le 2\pi$ and $0 \le r \le \theta^4$.
- (4) Find the area of the region bounded in polar coordinates by $0 \le \theta \le \pi/4$ and $\cos(\theta) \le r \le 2\cos(\theta)$.
- (5) Find the area of the region bounded in polar coordinates by $-\pi/6 \le \theta \le \pi/6$ and $\theta^2 \le r \le \cos(\theta)$.
- (6) Evaluate the following limits $\lim_{t\to t_0} \mathbf{r}(t)$ for the following vector functions $\mathbf{r}(t)$ and numbers t_0 .

(a)
$$\mathbf{r}(t) = (t, t^2, t^3), t_0 = -2$$

(b)
$$\mathbf{r}(t) = (\cos^2(t), 1 + \sin^2(t), \ln(1+t)), t_0 = 0$$

(c)
$$\mathbf{r}(t) = \left(\frac{\ln(1+t)}{t}, \frac{1+\cos(t)}{1+t^2}, t^3+t-2\right), t_0 = 0$$

¹From Hass, Weir, and Thomas' University calculus: alternate edition