Assignment 11 – Part 1 – Math 411

- (1) (Projecting onto the column space of a matrix.) Let $A \in M_{m,n}(\mathbf{R})$, so that $W = \operatorname{Col}(A) \leq V = \mathbf{R}^m$. We want to write down a formula for the orthogonal projection $P_W: V \to W$ in terms of A.
 - (a) First off, for a general inner product space V and $S \subseteq V$, let W = Span(S). Show that $v \in V$ is orthogonal to all $w \in W$ if and only if it is orthogonal to all $w \in S$.
 - (b) Now, let $V = \mathbf{R}^m$ (with the standard inner product) and $A \in M_{m,n}(\mathbf{R})$. Every vector in Col(A) is of the form Ax for some $x \in \mathbf{R}^n$, so given $v \in V$, the orthogonal projection onto Col(A) we seek is $\operatorname{proj}_W v = A\hat{x}$ for some $\hat{x} \in \mathbf{R}^n$ satisfying $v - A\hat{x}$ is orthogonal to all $w \in \operatorname{Col}(A)$. Show that $A\hat{x} = \operatorname{proj}_W v$ if $A^{\mathrm{T}}(v - A\hat{x}) = 0$. (Hint: use part (a) and the fact that $v_1 \cdot v_2 = v_1^{\mathrm{T}} v_2$.)
 - (c) Suppose the columns of A are linearly independent, and explain why $A^{\mathrm{T}}A$ is invertible.
 - (d) Suppose the columns of A are linearly independent, and show that $P_W = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}$ (i.e. for all $v \in V$, we have $\operatorname{proj}_W v = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}v$).
- (2) The exercise explains a general application of inner product spaces. Let V be an inner product space and let W be a subspace of V. Given $v \in V$, we seek the closest vector in W to v. Accordingly, we say that $\overline{v} \in W$ is a *best approximation* to v in W if

$$||v - \overline{v}|| \le ||v - w||$$
, for all $w \in W$.

- (a) The first step (carried out in parts (a)–(d)) is to show that \overline{v} is a best approximation to v if and only if $v - \overline{v}$ is orthogonal to all vectors in W (in other words, a best approximation is just what in class we called an orthogonal projection of v onto W). To show this, first suppose that $w \in W$ is such that v - wis orthogonal to all vectors in W, and show that $||v - w|| \leq ||v - w'||$ for all $w' \in W$. (Hint: write v - w' as (v - w) - (w - w').)
- (b) Given a vector $w' \in W$, show that every vector w'' in W can be written as $w'' = w' \widetilde{w}$ with $\widetilde{w} \in W$.
- (c) Suppose that $||v w|| \le ||v w'||$ for all $w' \in W$. Show that this implies that for all $w'' \in W$, one has $2\operatorname{Re}(\langle v w, w'' \rangle) + \langle w'', w'' \rangle \ge 0$.

- (d) Plugging in $w'' = -\frac{\langle v w, w w' \rangle}{\langle w w', w w' \rangle} (w w')$ into the inequality of part (c), conclude that if $||v w|| \le ||v w'||$ for all $w' \in W$, then $\langle v w, w w' \rangle = 0$ and hence that v w is orthogonal to all vectors in W.
- (e) Show that if a best approximation exists, then it is unique.
- (3) Here's an example of applying the idea of a best approximation. The setup is the following. Let $m, n \ge 1$ and let $A \in M_{m,n}(\mathbf{R})$. Let $V = \mathbf{R}^m$ (equipped with the standard inner product) and let $W = \operatorname{Col}(A) \le V$. For $b \in V$, recall that there is a solution to Ax = b if and only if $b \in \operatorname{Col}(A)$. Sometimes, one has a vector $b \in V$ for which there is no solution to Ax = b, but there "should" be (like if b represents an experimental measurement, which should theoretically lie in the column space of A, but doesn't not due to the noise in the experiment). In such a case, we seek $\hat{x} \in \mathbf{R}^n$ such that $||A\hat{x} b|| \le ||Ax b||$ for all $x \in \mathbf{R}^n$. Such a solution is called a *least squares solution* to Ax = b.
 - (a) Let $p = \operatorname{proj}_W b$ and let \hat{x} be a solution of Ax = p. Using Question (2) (or otherwise) show that \hat{x} is a least squares solution to Ax = b. (Hint: every element of W is of the form Ax for some $x \in \mathbf{R}^n$.)
 - (b) Show that the only least squares solutions of Ax = b are the solutions to Ax = p.
 - (c) Conclude from Question (1) that the least squares solutions to Ax = b are the solutions to $A^{T}Ax = A^{T}b$.
- (4) (Least squares linear fit.) Finally, let's give a concrete application. Suppose you have made m measurements of some physical quantity at times t_1, \dots, t_m and you obtained the values y_1, \dots, y_m , respectively. Suppose that physics tells you there should be a linear relation between y and t, i.e. there's a physical law that says that y(t) satisfies $y(t) = \alpha t + \beta$ for some $\alpha, \beta \in \mathbf{R}$. How do you find α and β given the m data points? Well, one method is the least squares fit. In a perfect world, you would have that $y_i = \alpha t_i + \beta$ for all $i = 1, \dots, m$, so using two different times would yield α and β . Sadly, the world is far from perfect. Instead, you end up with m equations

$$y_1 = \alpha t_1 + \beta$$

$$\vdots$$

$$y_m = \alpha t_m + \beta$$

in the two unknowns α and β , and there's is probably no solution at all! Let

$$b = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \in \mathbf{R}^m \text{ and } A = \begin{pmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{pmatrix} \in M_{m,2}(\mathbf{R}).$$

The least squares linear fit of the data points $\{(t_1, y_1), \ldots, (t_m, y_m)\}$ is $y(t) = \alpha t + \beta$, where $\hat{x} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ is the least squares solution to Ax = b.

(a) Suppose you have made three measurements $\{(0,0), (1,102), (4,400)\}$. Find the least squares linear fit of this data.