Assignment 11 — Parts 1 & 2 — Math 411

(1) (Projecting onto the column space of a matrix.) Let A € M,,,(R), so that W =
Col(A) <V =R™. We want to write down a formula for the orthogonal projection
Py : V — W in terms of A.

(a) First off, for a general inner product space V and S C V, let W = Span(9).
Show that v € V' is orthogonal to all w € W if and only if it is orthogonal to
allw e S.

(b) Now, let V' = R™ (with the standard inner product) and A € M,, ,(R). Every
vector in Col(A) is of the form Az for some z € R", so given v € V, the
orthogonal projection onto Col(A) we seek is projy, v = Az for some & € R”
satisfying v — Az is orthogonal to all w € Col(A). Show that Az = projy, v if
AT(v — Az) = 0. (Hint: use part (a) and the fact that vy - vy = v]v.)

(c) Suppose the columns of A are linearly independent, and explain why ATA is

invertible.

(d) Suppose the columns of A are linearly independent, and show that Py =
A(ATA)TLAT (ie. for all v € V', we have proj, v = A(ATA)"1ATv).

(2) The exercise explains a general application of inner product spaces. Let V be an
inner product space and let W be a subspace of V. Given v € V', we seek the closest
vector in W to v. Accordingly, we say that v € W is a best approximation to v in
Wit

llv —=3|| < ||v —wl|, for all w e W.

(a) The first step (carried out in parts (a)—(d)) is to show that v is a best approxi-
mation to v if and only if v —7 is orthogonal to all vectors in W (in other words,
a best approximation is just what in class we called an orthogonal projection
of v onto W). To show this, first suppose that w € W is such that v — w
is orthogonal to all vectors in W, and show that ||[v — w|| < |Jv — w'|| for all
w' € W. (Hint: write v —w as (v —w) — (w —w').)

(b) Given a vector w’ € W, show that every vector w” in W can be written as
w" =w —w with w e W.

(c) Suppose that ||[v —w|| < ||v —w'|| for all w’ € W. Show that this implies that
for all w” € W, one has 2Re({v — w, w”)) + (w",w") > 0.



(3)
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(d) Plugging in w" = — <<U w/,w i />> (w — w') into the inequality of part (c),
w—w,w—w

conclude that if ||v — w|| < ||v — w'|| for all w’ € W, then (v —w,w —w') =0

and hence that v — w is orthogonal to all vectors in W.

(e) Show that if a best approximation exists, then it is unique.

Here’s an example of applying the idea of a best approximation. The setup is the
following. Let m,n > 1 and let A € M,,,,(R). Let V.= R™ (equipped with the
standard inner product) and let W = Col(A) < V. For b € V, recall that there is
a solution to Az = b if and only if b € Col(A). Sometimes, one has a vector b € V'
for which there is no solution to Az = b, but there “should” be (like if b represents
an experimental measurement, which should theoretically lie in the column space
of A, but doesn’t not due to the noise in the experiment). In such a case, we seek
z € R" such that ||[Az — b|| < ||Az — b|| for all z € R™. Such a solution is called a

least squares solution to Ax = b.

(a) Let p = projy, b and let & be a solution of Ax = p. Using Question (2) (or
otherwise) show that Z is a least squares solution to Ax = b. (Hint: every

element of W is of the form Az for some x € R".)

(b) Show that the only least squares solutions of Az = b are the solutions to

Ax = p.

(¢) Conclude from Question (1) that the least squares solutions to Az = b are the
solutions to ATAx = ATb.

(Least squares linear fit.) Finally, let’s give a concrete application. Suppose you
have made m measurements of some physical quantity at times ¢, --- %, and you
obtained the values vy, ..., yn, respectively. Suppose that physics tells you there
should be a linear relation between y and ¢, i.e. there’s a physical law that says that
y(t) satisfies y(t) = at + S for some a, 8 € R. How do you find « and  given the
m data points? Well, one method is the least squares fit. In a perfect world, you
would have that y; = at; + ( for all e = 1,...,m, so using two different times would
yield o and (. Sadly, the world is far from perfect. Instead, you end up with m

equations

Yy =aty +

ym:atm+6



in the two unknowns a and 3, and there’s is probably no solution at all! Let

(0 ty 1
Yo ty 1

b=  |€eR"and A=| . | e M,2(R).
Ym t,, 1

The least squares linear fit of the data points {(¢1,41), ..., (tm, Ym)} 18 y(t) = at+ 0,

a
where T = is the least squares solution to Ax = b.

(a) Suppose you have made three measurements {(0,0), (1,102),(4,400)}. Find

the least squares linear fit of this data.

a) Show that the product of two unitary matrices is unitary.

(5) (
(b) Show that the product of two Hermitian matrices need not be Hermitian.
(

(c
d

(e

)

)

) Show that the sum of two Hermitian matrices is Hermitian.

) Show that the sum of two unitary matrices need not be unitary.
)

Can you find two unitary matrices whose sum is unitary? (If so, what are
they?)

(6) In this exercise, you'll show that the set of 2 x 2 orthogonal matrices consists exactly

of the matrices

Ry — ((:f)s(e) —sin(@)) and By — (c?s(ﬁ) sin(0) )
sin(f)  cos(0) sin(f) — cos(0)

for 0 < 60 < 27.

(a) First, show that Ry and Ry are orthogonal.

(b) Show that, for all §,0" € [0,27), Ry # Re. Also, show that when 6 # ¢,
R@ 7é Rg/ and }_%9 7é E@/.

(¢) If O is a 2 x 2 orthogonal matrix, show that its entries are all at most 1 in
absolute value. Conclude that every entry can be written as cos(6) (or sin(#))
for some 6 € [0, 27).

(d) Show that if the (1,1)-entry of O is £ cos(f), then the (2, 1)-entry is £ sin(6)
and the (1,2)-entry is also +sin(#).

(e) Similarly, show that if the (1,2)-entry is +sin(f), then the (2,2)-entry is
+ cos(6).



0 —sin(#
(f) Show that if the first column is cos(9) , then the second column is + sin(6) :
sin(6) cos(6)

(g) Finally, show that you can always find 6 € [0, 27) such that the first column is
cos(f)
(sin(@)) '
(h) We know that Ry represents a rotation by angle 6 counterclockwise around the
origin. Show that Ry is a reflection across the y-axis followed by Ry. Thus,

every orthogonal matrix represents either a rotation or a reflection followed by

a rotation.
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