
Assignment 11 – All 3 parts – Math 411

Due in the class: Friday, Apr. 17, 2015

(1) (Projecting onto the column space of a matrix.) Let A ∈ Mm,n(R), so that W =

Col(A) ≤ V = Rm. We want to write down a formula for the orthogonal projection

PW : V → W in terms of A.

(a) First off, for a general inner product space V and S ⊆ V , let W = Span(S).

Show that v ∈ V is orthogonal to all w ∈ W if and only if it is orthogonal to

all w ∈ S.

(b) Now, let V = Rm (with the standard inner product) and A ∈Mm,n(R). Every

vector in Col(A) is of the form Ax for some x ∈ Rn, so given v ∈ V , the

orthogonal projection onto Col(A) we seek is projW v = Ax̂ for some x̂ ∈ Rn

satisfying v − Ax̂ is orthogonal to all w ∈ Col(A). Show that Ax̂ = projW v if

AT(v − Ax̂) = 0. (Hint: use part (a) and the fact that v1 · v2 = vT1 v2.)

(c) Suppose the columns of A are linearly independent, and explain why ATA is

invertible.

(d) Suppose the columns of A are linearly independent, and show that PW =

A(ATA)−1AT (i.e. for all v ∈ V , we have projW v = A(ATA)−1ATv).

(2) The exercise explains a general application of inner product spaces. Let V be an

inner product space and let W be a subspace of V . Given v ∈ V , we seek the closest

vector in W to v. Accordingly, we say that v ∈ W is a best approximation to v in

W if

||v − v|| ≤ ||v − w||, for all w ∈ W.

(a) The first step (carried out in parts (a)–(d)) is to show that v is a best approxi-

mation to v if and only if v−v is orthogonal to all vectors in W (in other words,

a best approximation is just what in class we called an orthogonal projection

of v onto W ). To show this, first suppose that w ∈ W is such that v − w

is orthogonal to all vectors in W , and show that ||v − w|| ≤ ||v − w′|| for all

w′ ∈ W . (Hint: write v − w′ as (v − w)− (w − w′).)

(b) Given a vector w′ ∈ W , show that every vector w′′ in W can be written as

w′′ = w′ − w̃ with w̃ ∈ W .

(c) Suppose that ||v−w|| ≤ ||v−w′|| for all w′ ∈ W . Show that this implies that

for all w′′ ∈ W , one has 2Re(〈v − w,w′′〉) + 〈w′′, w′′〉 ≥ 0.



(d) Plugging in w′′ = − 〈v − w,w − w
′〉

〈w − w′, w − w′〉
(w − w′) into the inequality of part (c),

conclude that if ||v − w|| ≤ ||v − w′|| for all w′ ∈ W , then 〈v − w,w − w′〉 = 0

and hence that v − w is orthogonal to all vectors in W .

(e) Show that if a best approximation exists, then it is unique.

(3) Here’s an example of applying the idea of a best approximation. The setup is the

following. Let m,n ≥ 1 and let A ∈ Mm,n(R). Let V = Rm (equipped with the

standard inner product) and let W = Col(A) ≤ V . For b ∈ V , recall that there is

a solution to Ax = b if and only if b ∈ Col(A). Sometimes, one has a vector b ∈ V
for which there is no solution to Ax = b, but there “should” be (like if b represents

an experimental measurement, which should theoretically lie in the column space

of A, but doesn’t not due to the noise in the experiment). In such a case, we seek

x̂ ∈ Rn such that ||Ax̂− b|| ≤ ||Ax− b|| for all x ∈ Rn. Such a solution is called a

least squares solution to Ax = b.

(a) Let p = projW b and let x̂ be a solution of Ax = p. Using Question (2) (or

otherwise) show that x̂ is a least squares solution to Ax = b. (Hint: every

element of W is of the form Ax for some x ∈ Rn.)

(b) Show that the only least squares solutions of Ax = b are the solutions to

Ax = p.

(c) Conclude from Question (1) that the least squares solutions to Ax = b are the

solutions to ATAx = ATb.

(4) (Least squares linear fit.) Finally, let’s give a concrete application. Suppose you

have made m measurements of some physical quantity at times t1, · · · , tm and you

obtained the values y1, . . . , ym, respectively. Suppose that physics tells you there

should be a linear relation between y and t, i.e. there’s a physical law that says that

y(t) satisfies y(t) = αt + β for some α, β ∈ R. How do you find α and β given the

m data points? Well, one method is the least squares fit. In a perfect world, you

would have that yi = αti +β for all i = 1, . . . ,m, so using two different times would

yield α and β. Sadly, the world is far from perfect. Instead, you end up with m

equations

y1 = αt1 + β

...

ym = αtm + β



in the two unknowns α and β, and there’s is probably no solution at all! Let

b =


y1

y2
...

ym

 ∈ Rm and A =


t1 1

t2 1
...

...

tm 1

 ∈Mm,2(R).

The least squares linear fit of the data points {(t1, y1), . . . , (tm, ym)} is y(t) = αt+β,

where x̂ =

(
α

β

)
is the least squares solution to Ax = b.

(a) Suppose you have made three measurements {(0, 0), (1, 102), (4, 400)}. Find

the least squares linear fit of this data.

(5) (a) Show that the product of two unitary matrices is unitary.

(b) Show that the product of two Hermitian matrices need not be Hermitian.

(c) Show that the sum of two Hermitian matrices is Hermitian.

(d) Show that the sum of two unitary matrices need not be unitary.

(e) Can you find two unitary matrices whose sum is unitary? (If so, what are

they?)

(6) In this exercise, you’ll show that the set of 2×2 orthogonal matrices consists exactly

of the matrices

Rθ =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
and Rθ =

(
cos(θ) sin(θ)

sin(θ) − cos(θ)

)

for 0 ≤ θ < 2π.

(a) First, show that Rθ and Rθ are orthogonal.

(b) Show that, for all θ, θ′ ∈ [0, 2π), Rθ 6= Rθ′ . Also, show that when θ 6= θ′,

Rθ 6= Rθ′ and Rθ 6= Rθ′ .

(c) If O is a 2 × 2 orthogonal matrix, show that its entries are all at most 1 in

absolute value. Conclude that every entry can be written as cos(θ) (or sin(θ))

for some θ ∈ [0, 2π).

(d) Show that if the (1, 1)-entry of O is ± cos(θ), then the (2, 1)-entry is ± sin(θ)

and the (1, 2)-entry is also ± sin(θ).

(e) Similarly, show that if the (1, 2)-entry is ± sin(θ), then the (2, 2)-entry is

± cos(θ).



(f) Show that if the first column is

(
cos(θ)

sin(θ)

)
, then the second column is±

(
− sin(θ)

cos(θ)

)
.

(g) Finally, show that you can always find θ ∈ [0, 2π) such that the first column is(
cos(θ)

sin(θ)

)
.

(h) We know that Rθ represents a rotation by angle θ counterclockwise around the

origin. Show that Rθ is a reflection across the y-axis followed by Rθ. Thus,

every orthogonal matrix represents either a rotation or a reflection followed by

a rotation.

(7) In class, we defined the polynomial Pn(x1, . . . , xn) =
∏

1≤i<j≤n

(xi− xj) and for a per-

mutation of degree n, say σ ∈ Sn, we defined (σPn)(x1, . . . , xn) = Pn(xσ(1), . . . , xσ(n)).

Finally, for σ ∈ Sn, we defined sgn(σ) ∈ {±1} by σ(Pn) = sgn(σ)Pn.

(a) For each of the two permutations σ in S2, determine sgn(σ).

(b) For each of the six permutations σ in S3, determine sgn(σ).

(8) Recall that if V = F n and A ∈ Mn(F ), then BA(v, w) = vTAw is a bilinear form

on V (and all bilinear forms on V can be written like this). The matrix A is called

skew-symmetric if AT = −A.

(a) Show that if F = R, then the diagonal entries of a skew-symmetric matrix are

0. For F = F2, explain why skew-symmetric is the same as symmetric, and

give an example of a skew-symmetric matrix over F2 whose diagonal entries

are not zero.

(b) A matrix A ∈Mn(F ) is called alternating if it is skew-symmetric with 0’s down

the diagonal (so this is the same as skew-symmetric if 2 6= 0 in F ). Show that

the bilinear form BA is alternating if and only if A is alternating.

(c) Show that the space of 2 × 2 alternating matrices over F is one-dimensional.

Conclude that the space of alternating bilinear forms on F 2 is one-dimensional

and give a non-zero vector (i.e. a basis vector) of it.
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