Assignment 1 – All 2 parts – Math 411

Due in the class: Friday, Jan. 23, 2015

(1) Consider the following three vectors in \mathbf{C}^2

$$v_1 = \begin{pmatrix} 2-i \\ 5 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 3+i \end{pmatrix}, \quad w = \begin{pmatrix} 3-3i \\ 8+2i \end{pmatrix}.$$

Determine the solutions, if any, to the equation

$$\alpha_1 v_1 + \alpha_2 v_2 = w$$

with $\alpha_i \in \mathbf{C}$.

(2) Recall the following addition and multiplication tables given in class for the field \mathbf{F}_2 with two elements

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Taking for granted that this gives a field, consider the following three vectors in \mathbf{F}_2^3

$$v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

For each of

$$w = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$,

determine the solutions, if any, to the equation

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = w$$

with $\alpha_i \in \mathbf{F}_2$.

- (3) Let F be a field. Show that if there is a non-zero element $\alpha \in F$ such that $\alpha + \alpha = 0$, then $\beta + \beta = 0$ for all $\beta \in F$. (Hint: first show that 1 + 1 = 0)
- (4) Show that the addition and multiplication tables in question (2) do indeed give a

field. (In class, we showed the properties of addition hold, you just need to show those of multiplication and the distributive property).

- (5) Let F be a field. Show that for all a in F, we have that $(-1) \cdot a = -a$, i.e. the additive inverse of a is a times the additive inverse of 1.
- (6) Consider the set of integers \mathbf{Z} and recall that $a \in \mathbf{Z}$ is called *even* if there is a number $b \in \mathbf{Z}$ such that a = 2b; otherwise, a is called *odd*. Consider the following relation, denoted \equiv , on the set \mathbf{Z} : $a \equiv b$ if a and b are either both even or both odd.
 - (a) Go through the explanation, which will likely feel quite silly, that shows that \equiv is an *equivalence* relation.
 - (b) Given $a, b \in \mathbb{Z}$, we say that a divides b if there is a number $d \in \mathbb{Z}$ such that b = ad. For $a, b \in \mathbb{Z}$, show that $a \equiv b$ if and only if 2 divides a b.
- (7) Sudoku-ish: There is a field with three elements 0, 1, and some other element, let's say α . It's called \mathbf{F}_3 . Write down what its addition and multiplication tables must be (in class, we did this for \mathbf{F}_2). (You don't need to verify that those tables actually give a field, you just have to figure out what the axioms of a field force those tables to be). Provide your reasoning.
- (8) Do the same thing as the previous question, but with 4 elements 0, 1, α, β. (Hint: like in harder Sudoku problems, you may have to make a guess at some point while filling out the addition table, in which case you'll have to see why only one of the possibilities works out).