Assignment 4 – Parts 1 & 2 – Math 411

- (1) Let $F = \mathbf{F}_2$ and let V be a two-dimensional vector space over F.
 - (a) How many vectors are there in V?
 - (b) How many subspaces of V are there?
 - (c) How many bases of V are there?
 - (d) How many bases of a three-dimensional vector space over F are there?
 - (e) How many bases of a two-dimensional vector space over \mathbf{F}_3 are there?
- (2) Let F be a field and let $m, n \in \mathbb{Z}_{\geq 1}$. Let $M_{m,n}(F)$ denote the set of $m \times n$ matrices over F (i.e. with entries in F). For two matrices $A = (a_{ij})$ and $B = (b_{ij})$ in $M_{m,n}(F)$, let $A + B = (a_{ij} + b_{ij})$ be the usual matrix addition and $\alpha A = (\alpha a_{ij})$ be the usual scalar multiplication with $\alpha \in F$. This makes $M_{m,n}(F)$ into a vector space over F(no need to show this, though you can think about why).
 - (a) Find a basis for $M_{m,n}(F)$.
 - (b) What is the dimension of $M_{m,n}(F)$?
- (3) Let $V = M_{n,n}(F)$ and recall that if $A = (a_{i,j})$ is a matrix, then its *transpose* is the matrix A^T whose (i, j)-entry is $a_{j,i}$. A matrix $A \in M_{n,n}(F)$ is called *symmetric* if $A^T = A$ and *antisymmetric* if $A^T = -A$.
 - (a) Let \mathcal{S} and \mathcal{A} be the set of symmetric and antisymmetric matrices in $M_{n,n}(F)$, respectively. Show that \mathcal{S} and \mathcal{A} are subspaces of $M_{n,n}(F)$.
 - (b) Show that $M_{n,n}(F) = \mathcal{S} \oplus \mathcal{A}$.
 - (c) A matrix $A = (a_{i,j})$ is called *strictly upper-triangular* if $a_{i,j} = 0$ whenever $j \leq i$, i.e. if all the elements on the diagonal and below are zero. Let \mathcal{U} be the set of strictly upper-triangular matrices in $M_{n,n}(F)$. Is \mathcal{U} a subspace of $M_{n,n}(F)$? If so, is $M_{n,n}(F) = \mathcal{S} \oplus \mathcal{U}$? Is $M_{n,n}(F) = \mathcal{A} \oplus \mathcal{U}$?
- (4) Let W_1, W_2 be two planes through the origin in \mathbb{R}^3 . Show that $\dim(W_1 \cap W_2) \ge 1$.
- (5) Let $V = \operatorname{Func}(\mathbf{R}, \mathbf{R})$. Let

 $\mathcal{P} = \{ f : \mathbf{R} \to \mathbf{R} : f(x) \ge 0 \text{ for all } x \} \text{ and } \mathcal{N} = \{ f : \mathbf{R} \to \mathbf{R} : f(x) \le 0 \text{ for all } x \}.$

Are \mathcal{P} and \mathcal{N} subspaces of V? If so, show that $V = \mathcal{P} \oplus \mathcal{N}$.

(6) Let V be a finite-dimensional vector space and let $W_i \leq V$ for $i \in I$ be such that

$$V = \bigoplus_{i \in I} W_i.$$

- (a) Show that I is finite.
- (b) Show that, as claimed in class, dim $V = \sum_{i \in I} \dim W_i$.
- (7) Let V be a vector space and let \mathcal{B} be a basis of V. For each $b \in \mathcal{B}$, let $W_b = \text{Span}(\{b\}) \leq V$. Go through the details of proving that

$$V = \bigoplus_{b \in \mathcal{B}} W_b,$$

as claimed in class.