Assignment 8 – Parts 1 & 2 – Math 411

- (1) Let V be a vector space over F, let $\alpha \in F$, and let $T_{\alpha} : V \to V$ be the linear transformation $v \mapsto \alpha v$. Prove the following properties we discussed in class.
 - (a) $T_0 = 0$
 - (b) $T_1 = 1$
 - (c) $T_{\alpha_1+\alpha_2} = T_{\alpha_1} + T_{\alpha_2}$
 - (d) $T_{\alpha_1\alpha_2} = T_{\alpha_1}T_{\alpha_2}$

(Remark: these show that F can be thought of as a "subalgebra" of End(V).)

- (2) Let $T: V \to W$ be a linear transformation. Prove the following statements (without assuming V and W are finite-dimensional).
 - (a) If $\dim(V) < \dim(W)$, then T cannot be surjective.
 - (b) If $\dim(V) > \dim(W)$, then T cannot be injective.